Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 115408 by mr W last updated on 25/Sep/20

how many 6 digit numbers exist  which are divisible by 11 and have no  repeating digits?

$${how}\:{many}\:\mathrm{6}\:{digit}\:{numbers}\:{exist} \\ $$$${which}\:{are}\:{divisible}\:{by}\:\mathrm{11}\:{and}\:{have}\:{no} \\ $$$${repeating}\:{digits}? \\ $$

Answered by Olaf last updated on 26/Sep/20

N = a_5 a_4 a_3 a_2 a_1 a_0   A number is divisible by 11 if the sum  of its even−numbered digits  substracted from the sum of its   odd−numbered digits is zero  or a multiple of 11.  N = a_0 +10a_1 +10^2 a_2 +10^3 a_3 +10^4 a_4 +10^5 a_5   N = a_0 +(1×11−1)a_1 +(9×11+1)a_2   +(91×11−1)a_3 +(909×11+1)a_4 +(9091×11−1)a_5   ⇒ N = (a_0 −a_1 +a_2 −a_3 +a_4 −a_5 )+11p  with p∈Z  ⇒ N is divisible by 11 if  a_0 −a_1 +a_2 −a_3 +a_4 −a_5  ≡ 0 [11]  (a_0 +a_2 +a_4 )−(a_1 +a_3 +a_5 ) ≡ 0 [11]  ... to be continued.

$$\mathrm{N}\:=\:{a}_{\mathrm{5}} {a}_{\mathrm{4}} {a}_{\mathrm{3}} {a}_{\mathrm{2}} {a}_{\mathrm{1}} {a}_{\mathrm{0}} \\ $$$$\mathrm{A}\:\mathrm{number}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{11}\:\mathrm{if}\:\mathrm{the}\:\mathrm{sum} \\ $$$$\mathrm{of}\:\mathrm{its}\:\mathrm{even}−\mathrm{numbered}\:\mathrm{digits} \\ $$$$\mathrm{substracted}\:\mathrm{from}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{its}\: \\ $$$$\mathrm{odd}−\mathrm{numbered}\:\mathrm{digits}\:\mathrm{is}\:\mathrm{zero} \\ $$$$\mathrm{or}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{11}. \\ $$$$\mathrm{N}\:=\:{a}_{\mathrm{0}} +\mathrm{10}{a}_{\mathrm{1}} +\mathrm{10}^{\mathrm{2}} {a}_{\mathrm{2}} +\mathrm{10}^{\mathrm{3}} {a}_{\mathrm{3}} +\mathrm{10}^{\mathrm{4}} {a}_{\mathrm{4}} +\mathrm{10}^{\mathrm{5}} {a}_{\mathrm{5}} \\ $$$$\mathrm{N}\:=\:{a}_{\mathrm{0}} +\left(\mathrm{1}×\mathrm{11}−\mathrm{1}\right){a}_{\mathrm{1}} +\left(\mathrm{9}×\mathrm{11}+\mathrm{1}\right){a}_{\mathrm{2}} \\ $$$$+\left(\mathrm{91}×\mathrm{11}−\mathrm{1}\right){a}_{\mathrm{3}} +\left(\mathrm{909}×\mathrm{11}+\mathrm{1}\right){a}_{\mathrm{4}} +\left(\mathrm{9091}×\mathrm{11}−\mathrm{1}\right){a}_{\mathrm{5}} \\ $$$$\Rightarrow\:\mathrm{N}\:=\:\left({a}_{\mathrm{0}} −{a}_{\mathrm{1}} +{a}_{\mathrm{2}} −{a}_{\mathrm{3}} +{a}_{\mathrm{4}} −{a}_{\mathrm{5}} \right)+\mathrm{11}{p} \\ $$$$\mathrm{with}\:{p}\in\mathbb{Z} \\ $$$$\Rightarrow\:\mathrm{N}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{11}\:\mathrm{if} \\ $$$${a}_{\mathrm{0}} −{a}_{\mathrm{1}} +{a}_{\mathrm{2}} −{a}_{\mathrm{3}} +{a}_{\mathrm{4}} −{a}_{\mathrm{5}} \:\equiv\:\mathrm{0}\:\left[\mathrm{11}\right] \\ $$$$\left({a}_{\mathrm{0}} +{a}_{\mathrm{2}} +{a}_{\mathrm{4}} \right)−\left({a}_{\mathrm{1}} +{a}_{\mathrm{3}} +{a}_{\mathrm{5}} \right)\:\equiv\:\mathrm{0}\:\left[\mathrm{11}\right] \\ $$$$...\:\mathrm{to}\:\mathrm{be}\:\mathrm{continued}. \\ $$

Commented by mr W last updated on 26/Sep/20

thanks so far sir!  seems to be a tough task, since we  have C_6 ^(10) =210 ways to select 6 digits!

$${thanks}\:{so}\:{far}\:{sir}! \\ $$$${seems}\:{to}\:{be}\:{a}\:{tough}\:{task},\:{since}\:{we} \\ $$$${have}\:{C}_{\mathrm{6}} ^{\mathrm{10}} =\mathrm{210}\:{ways}\:{to}\:{select}\:\mathrm{6}\:{digits}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com