Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115449 by mathmax by abdo last updated on 25/Sep/20

calculate ∫_(−∞) ^∞   (x^2 /((x^2 −x+1)^3 ))dx

calculatex2(x2x+1)3dx

Answered by MJS_new last updated on 25/Sep/20

∫(x^2 /((x^2 −x+1)^3 ))dx=       [Ostrogeadski]  =((2x^3 −3x^2 +2x−2)/(6(x^2 −x+1)^2 ))+(1/3)∫(dx/(x^2 −x+1))=  =((2x^3 −3x^2 +2x−2)/(6(x^2 −x+1)^2 ))+((2(√3))/9)arctan (((√3)(2x−1))/( 3)) +C  ⇒ answer is ((2(√3))/9)π

x2(x2x+1)3dx=[Ostrogeadski]=2x33x2+2x26(x2x+1)2+13dxx2x+1==2x33x2+2x26(x2x+1)2+239arctan3(2x1)3+Cansweris239π

Commented by mathmax by abdo last updated on 26/Sep/20

thank you sir

thankyousir

Answered by mathmax by abdo last updated on 26/Sep/20

A =∫_(−∞) ^(+∞)  (x^2 /((x^2 −x+1)^3 ))dx  we have x^2 −x+1 =x^2 −2(x/2) +(1/4) +(3/4)  =(x−(1/2))^2 +(3/4)  we do the changement x−(1/2) =((√3)/2)t ⇒  A =∫_(−∞) ^(+∞)   ((((1/2)+((√3)/2)t)^2 )/(((3/4)(1+t^2 ))^3 )).((√3)/2)dt =((√3)/8).(4^3 /3^3 ) ∫_(−∞) ^(+∞)  ((((√3)t+1)^2 )/((t^2 +1)^3 ))dt  =((8(√3))/(27)) ∫_(−∞) ^(+∞) ((3t^2 +2(√3)t +1)/((t^2  +1)^3 ))dt  =((8(√3))/(27))∫_(−∞) ^(+∞)  ((3t^2  +1)/((t^2  +1)^3 ))dt +((8(√3))/(27))∫_(−∞) ^(+∞)  ((2(√3)t)/((t^2  +1)^3 ))dt(→=0)  =((8(√3))/(27)) ∫_(−∞) ^(+∞)  ((3t^2  +1)/((t^2  +1)^3 ))dt let ϕ(z) =((3z^2  +1)/((z^2  +1)^3 )) ⇒ϕ(z) =((3z^2  +1)/((z−i)^3 (z+i)^3 ))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i) and   Res(ϕ,i) =lim_(z→i)    (1/((3−1)!)){(z−i)^3 ϕ(z)}^((2))   =(1/2)lim_(z→i)    {((3z^2 +1)/((z+i)^3 ))}^((2))  =(1/2)lim_(z→i)   {((6z(z+i)^3 −3(z+i)^2 (3z^2 +1))/((z+i)^6 ))}^((1))   =(1/2)lim_(z→i)    {((6z(z+i)−3(3z^2 +1))/((z+i)^4 ))}^((1))   =(1/2)lim_(z→i)    {((−3z^2 +6iz−3)/((z+i)^4 ))}^((1))   =(1/2)lim_(z→i)    (((−6z+6i)(z+i)^4 −4(z+i)^3 (−3z^2 +6iz −3))/((z+i)^8 ))  =(1/2)lim_(z→i)    (((−6z+6i)(z+i)−4(−3z^2 +6iz −3))/((z+i)^5 ))  =(1/2).((−4(3−9))/((2i)^5 )) =((24)/(2.2^5 .i)) =((12)/(2^5 i)) =((2^2 .3)/(2^5 i)) =(3/(8i)) ⇒∫_(−∞) ^(+∞) ϕ(z)dz  =2iπ.(3/(8i)) =((3π)/4) ⇒A =((8(√3))/(27)).((3π)/4) =((2π(√3))/9)

A=+x2(x2x+1)3dxwehavex2x+1=x22x2+14+34=(x12)2+34wedothechangementx12=32tA=+(12+32t)2(34(1+t2))3.32dt=38.4333+(3t+1)2(t2+1)3dt=8327+3t2+23t+1(t2+1)3dt=8327+3t2+1(t2+1)3dt+8327+23t(t2+1)3dt(→=0)=8327+3t2+1(t2+1)3dtletφ(z)=3z2+1(z2+1)3φ(z)=3z2+1(zi)3(z+i)3+φ(z)dz=2iπRes(φ,i)andRes(φ,i)=limzi1(31)!{(zi)3φ(z)}(2)=12limzi{3z2+1(z+i)3}(2)=12limzi{6z(z+i)33(z+i)2(3z2+1)(z+i)6}(1)=12limzi{6z(z+i)3(3z2+1)(z+i)4}(1)=12limzi{3z2+6iz3(z+i)4}(1)=12limzi(6z+6i)(z+i)44(z+i)3(3z2+6iz3)(z+i)8=12limzi(6z+6i)(z+i)4(3z2+6iz3)(z+i)5=12.4(39)(2i)5=242.25.i=1225i=22.325i=38i+φ(z)dz=2iπ.38i=3π4A=8327.3π4=2π39

Terms of Service

Privacy Policy

Contact: info@tinkutara.com