Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115459 by john santu last updated on 26/Sep/20

I= ∫_0 ^1  (dx/((1+x^3 )((1+x^3 ))^(1/(3 )) )) ?  I=∫_0 ^(π/2)  cos^2 x cos^2 (2x) dx = ?

I=10dx(1+x3)1+x33?I=π20cos2xcos2(2x)dx=?

Answered by bemath last updated on 26/Sep/20

I=∫cos^2 x cos^2 (2x) dx   I=∫ (cos x cos (2x))^2  dx   I= (1/4)∫ (cos 3x+cos x)^2  dx  I=(1/4)∫ (cos^2 (3x)+2cos 3xcos x+cos^2 x)dx  I=(1/4)∫((1/2)+(1/2)cos 6x+cos 4x+(3/2)cos 2x+(1/2))dx  I=(1/4)∫(1+cos 6x+cos 4x+(3/2)cos 2x)dx  I=(1/4)x+(1/(24))sin 6x+(1/(16))sin 4x+(3/(16))sin  2x+c  now put border   I=∫_0 ^(π/2)  cos^2 x cos^2 (2x) dx   I= [(x/4) +((sin 6x)/(24)) + ((sin 4x)/(16)) + ((3 sin 2x)/(16)) ]_0 ^(π/2)   I=(π/8)

I=cos2xcos2(2x)dxI=(cosxcos(2x))2dxI=14(cos3x+cosx)2dxI=14(cos2(3x)+2cos3xcosx+cos2x)dxI=14(12+12cos6x+cos4x+32cos2x+12)dxI=14(1+cos6x+cos4x+32cos2x)dxI=14x+124sin6x+116sin4x+316sin2x+cnowputborderI=π20cos2xcos2(2x)dxI=[x4+sin6x24+sin4x16+3sin2x16]0π2I=π8

Answered by Dwaipayan Shikari last updated on 26/Sep/20

I=∫_0 ^1 (dx/((1+x^3 )^(4/3) ))=∫_0 ^1 (dx/(x^4 (1+(1/x^3 ))^(4/3) ))=−(1/3)∫_0 ^1 ((((−3)/x^4 )dx)/((1+(1/x^3 ))^(4/3) ))  =[(1+(1/x^3 ))^(−(1/3)) ]_0 ^1 =(1/( (2)^(1/3) ))−2

I=01dx(1+x3)43=01dxx4(1+1x3)43=13013x4dx(1+1x3)43=[(1+1x3)13]01=1232

Answered by TANMAY PANACEA last updated on 26/Sep/20

I=∫_0 ^(π/2) cos^2 xcos^2 (2x)dx  =∫_0 ^(π/2) cos^2 ((π/2)−x)cos^2 (π−2x)dx  =∫_0 ^(π/2) sin^2 xcos^2 2x dx  2I=∫_0 ^(π/2) (cos^2 x+sin^2 x)cos^2 2x dx  2I=∫_0 ^(π/2) ((1+cos4x)/2)dx  4I=(x+((sin4x)/4))∣_0 ^(π/2)   4I=(π/2)→so I=(π/8)

I=0π2cos2xcos2(2x)dx=0π2cos2(π2x)cos2(π2x)dx=0π2sin2xcos22xdx2I=0π2(cos2x+sin2x)cos22xdx2I=0π21+cos4x2dx4I=(x+sin4x4)0π24I=π2soI=π8

Terms of Service

Privacy Policy

Contact: info@tinkutara.com