All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 115459 by john santu last updated on 26/Sep/20
I=∫10dx(1+x3)1+x33?I=∫π20cos2xcos2(2x)dx=?
Answered by bemath last updated on 26/Sep/20
I=∫cos2xcos2(2x)dxI=∫(cosxcos(2x))2dxI=14∫(cos3x+cosx)2dxI=14∫(cos2(3x)+2cos3xcosx+cos2x)dxI=14∫(12+12cos6x+cos4x+32cos2x+12)dxI=14∫(1+cos6x+cos4x+32cos2x)dxI=14x+124sin6x+116sin4x+316sin2x+cnowputborderI=∫π20cos2xcos2(2x)dxI=[x4+sin6x24+sin4x16+3sin2x16]0π2I=π8
Answered by Dwaipayan Shikari last updated on 26/Sep/20
I=∫01dx(1+x3)43=∫01dxx4(1+1x3)43=−13∫01−3x4dx(1+1x3)43=[(1+1x3)−13]01=123−2
Answered by TANMAY PANACEA last updated on 26/Sep/20
I=∫0π2cos2xcos2(2x)dx=∫0π2cos2(π2−x)cos2(π−2x)dx=∫0π2sin2xcos22xdx2I=∫0π2(cos2x+sin2x)cos22xdx2I=∫0π21+cos4x2dx4I=(x+sin4x4)∣0π24I=π2→soI=π8
Terms of Service
Privacy Policy
Contact: info@tinkutara.com