Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115464 by bemath last updated on 26/Sep/20

I= ∫_(0 ) ^1  x ln (1+x^2 ) dx ?  I=∫ (√(sin x)) .cos^3 x dx ?

I=10xln(1+x2)dx?I=sinx.cos3xdx?

Answered by malwaan last updated on 26/Sep/20

∫(√(sin x)) cos^3 x dx  =∫(√(sin x)) cos^2 x cos x dx  =∫(√(sin x)) (1−sin^2 x)d(sin x)  =∫(√u)(1−u^2 )du  {u=sin x}  y=(√u)⇒y^2 =u⇒2ydy=du  ∴ 2∫y(1−y^4 )ydy=2∫(y^2 −y^6 )dy  = 2((y^3 /3) − (y^6 /6))+ C  = 2(((((√u))^3 )/3) − ((((√u))^6 )/6) + C  = 2(((u(√u))/3) − (u^3 /6)) + C  = 2(((sinx(√(sinx)))/3) − ((sin^3 x)/6))+ C

sinxcos3xdx=sinxcos2xcosxdx=sinx(1sin2x)d(sinx)=u(1u2)du{u=sinx}y=uy2=u2ydy=du2y(1y4)ydy=2(y2y6)dy=2(y33y66)+C=2((u)33(u)66+C=2(uu3u36)+C=2(sinxsinx3sin3x6)+C

Commented by bemath last updated on 26/Sep/20

gave kudos

gavekudos

Commented by malwaan last updated on 26/Sep/20

gave kudos  What is this ?please

gavekudosWhatisthis?please

Commented by bemath last updated on 26/Sep/20

gave kudos = give compliments

gavekudos=givecompliments

Commented by bemath last updated on 26/Sep/20

������

Answered by malwaan last updated on 26/Sep/20

∫x ln(1+x^2 )dx  u=ln(1+x^2 )⇒du=((2x)/(1+x^2 )) dx  dv = xdx⇒v=(x^2 /2)  ∫udv=uv−∫vdu  ∴∫x ln(1+x^2 )dx=  (x^2 /2)ln(1+x^2 )−∫(x^3 /(1+x^2 )) dx  =(x^2 /2)ln(1+x^2 )−∫[x−(x/(1+x^2 ))]dx  =(x^2 /2)ln(1+x^2 )− (x^2 /2) + (1/2)ln(1+x^2 )+C  ∴  _0 ∫^1 x ln(1+x^2 )dx  = [(1/2)ln(2)− (1/2) +(1/2)ln(2)]− [0]  =ln(2)−(1/2)

xln(1+x2)dxu=ln(1+x2)du=2x1+x2dxdv=xdxv=x22udv=uvvduxln(1+x2)dx=x22ln(1+x2)x31+x2dx=x22ln(1+x2)[xx1+x2]dx=x22ln(1+x2)x22+12ln(1+x2)+C01xln(1+x2)dx=[12ln(2)12+12ln(2)][0]=ln(2)12

Answered by Dwaipayan Shikari last updated on 26/Sep/20

∫_0 ^1 xlog(1+x^2 )dx  =[log(1+x^2 )(x^2 /2)]_0 ^1 −∫_0 ^1 (x^2 /2).((2x)/(1+x^2 ))  =(1/2)log(2)−∫_0 ^1 x−(x/(1+x^2 ))  =(1/2)log(2)−(1/2)+[(1/2)log(1+x^2 )]_0 ^1   =log(2)−(1/2)

01xlog(1+x2)dx=[log(1+x2)x22]0101x22.2x1+x2=12log(2)01xx1+x2=12log(2)12+[12log(1+x2)]01=log(2)12

Answered by Ar Brandon last updated on 26/Sep/20

I=∫_0 ^1 xln(1+x^2 )dx=(1/2)∫_0 ^1 2xln(1+x^2 )dx     =(1/2)∫_0 ^1 ln(1+x^2 )d(x^2 )=[(((1+x^2 )[ln(1+x^2 )−1])/2)]_0 ^1      =(ln2−1)+(1/2)=ln2−(1/2)

I=01xln(1+x2)dx=12012xln(1+x2)dx=1201ln(1+x2)d(x2)=[(1+x2)[ln(1+x2)1]2]01=(ln21)+12=ln212

Answered by mathmax by abdo last updated on 26/Sep/20

I =∫_0 ^1  xln(1+x^2 )dx  by parts we get   I =[(x^2 /2)ln(1+x^2 )]_0 ^1 −∫_0 ^1 (x^2 /2).((2x)/(1+x^2 ))dx =((ln(2))/2)−∫_0 ^1 (x^3 /(x^2 +1))dx but  ∫_0 ^1  (x^3 /(x^2  +1))dx =∫_0 ^1 ((x(x^2 +1)−x)/(x^2  +1))dx =∫_0 ^1 xdx−∫_0 ^1  ((xdx)/(x^2  +1))  =(1/2)−[(1/2)ln(1+x^2 )]_0 ^1 =(1/2)−(1/2)ln(2) ⇒I =((ln(2))/2)−(1/2) +((ln(2))/2)  =ln(2)−(1/2)

I=01xln(1+x2)dxbypartswegetI=[x22ln(1+x2)]0101x22.2x1+x2dx=ln(2)201x3x2+1dxbut01x3x2+1dx=01x(x2+1)xx2+1dx=01xdx01xdxx2+1=12[12ln(1+x2)]01=1212ln(2)I=ln(2)212+ln(2)2=ln(2)12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com