Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 115498 by bobhans last updated on 26/Sep/20

∫ sec x dx ?  ∫ (√(x−(√x))) dx ?  lim_(n→∞)  (((((1+(√(1+n^2 ))))^(1/(n )) )(((2+(√(4+n^2 ))))^(1/(n )) )(((3+(√(9+n^2 ))))^(1/(n )) )...(((n+(√(2n^2 ))))^(1/(n )) ))/n)?

secxdx?xxdx?limn(1+1+n2n)(2+4+n2n)(3+9+n2n)...(n+2n2n)n?

Commented by bobhans last updated on 26/Sep/20

thank you all master...

thankyouallmaster...

Commented by Dwaipayan Shikari last updated on 26/Sep/20

∫(√(x−(√x)))dx         x−(√x)=t      ⇒1−(1/(2(√x)))=(dt/dx)  ∫(√(sin^4 θ−sin^2 θ))    dx      x=sinθ⇒1=cosθ.(dθ/dx)  ∫icosθsinθ(√(1−sin^2 θ)) dθ  ∫icos^2 θsinθdθ  ∫it^2 .dt  i(t^3 /3)+C=i((cos^3 θ)/3)+C=i((cos^3 (sin^(−1) x))/3)+C  (Complex Method)

xxdxxx=t112x=dtdxsin4θsin2θdxx=sinθ1=cosθ.dθdxicosθsinθ1sin2θdθicos2θsinθdθit2.dtit33+C=icos3θ3+C=icos3(sin1x)3+C(ComplexMethod)

Answered by bemath last updated on 26/Sep/20

(1) ∫ (dx/(cos x)) = ∫ ((cos x)/(cos^2 x)) dx   ∫ ((d(sin x))/(1−sin^2 x)) = ∫ (dp/(1−p^2 )) = tanh^(−1) (p)+c  = tanh^(−1) (sin x) + c

(1)dxcosx=cosxcos2xdxd(sinx)1sin2x=dp1p2=tanh1(p)+c=tanh1(sinx)+c

Answered by $@y@m last updated on 26/Sep/20

∫ sec x dx   ∫ sec x×((sec x+tan x)/(sec x+tan x)) dx   ∫ ((sec^2 x+sec x.tan x)/(sec x+tan x)) dx   ln (sec x+tan x)+C

secxdxsecx×secx+tanxsecx+tanxdxsec2x+secx.tanxsecx+tanxdxln(secx+tanx)+C

Answered by TANMAY PANACEA last updated on 26/Sep/20

lim_(n→∞)  (((1+(√(1^2 +n^2 ))))^(1/n) /n^(1/n) )×(((2+(√(2^2 +n^2 ))))^(1/n) /n^(1/n) )×..(((n+(√(n^2 +n^2 ))))^(1/n) /n^(1/n) )  look general term  (((r+(√(r^2 +n^2 )))/n))^(1/n) →((r/n)+(√(1+(r^2 /n^2 ))) )^(1/n)   i have done error...so correcting now  y=lim_(n→∞)  Π((r/n)+(√(1+(r^2 /n^2 ))) )^(1/n)   lny=lim_(n→∞)  (1/n)[ln((1/n)+(√(1+(1^2 /n^2 ))) )+ln((2/n)+(√(1+(2^2 /n^2 ))) )+...ln((n/n)+(√(1+(n^2 /n^2 ))) )]  lny=∫_0 ^1 ln(x+(√(1+x^2 )) )dx          general term =(((r+(√(r^2 +))))^(1/n) /)

limn1+12+n2nn1n×2+22+n2nn1n×..n+n2+n2nn1nlookgeneralterm(r+r2+n2n)1n(rn+1+r2n2)1nihavedoneerror...socorrectingnowy=limnΠ(rn+1+r2n2)1nlny=limn1n[ln(1n+1+12n2)+ln(2n+1+22n2)+...ln(nn+1+n2n2)]lny=01ln(x+1+x2)dxgeneralterm=r+r2+n

Commented by bemath last updated on 26/Sep/20

why the general term not complete

whythegeneraltermnotcomplete

Answered by Dwaipayan Shikari last updated on 26/Sep/20

Π_(r=1) ^n ((r/n)+(√((r^2 /n^2 )+1)))^(1/n) =y  (1/n)Σ_(r=1) ^n log((r/n)+(√((r^2 /n^2 )+1)))=logy  ∫_0 ^1 log(x+(√(x^2 +1)))dx  [xlog(x+(√(x^2 +1)))]_0 ^1 −∫_0 ^1 (x/(x+(√(x^2 +1)))).(1+(x/( (√(x^2 +1)))))dx  =log((√2)+1)−(1/2)∫_0 ^1 ((2x)/( (√(x^2 +1))))  =log((√2)+1)−[(√(x^2 +1))]_0 ^1   =log((√2)+1)−(√2)+1=logy  ⇒y=((√2)+1)e^(1−(√2))

Missing \left or extra \right1nnr=1log(rn+r2n2+1)=logy01log(x+x2+1)dx[xlog(x+x2+1)]0101xx+x2+1.(1+xx2+1)dx=log(2+1)12012xx2+1=log(2+1)[x2+1]01=log(2+1)2+1=logyy=(2+1)e12

Answered by mathmax by abdo last updated on 26/Sep/20

let U_n =(1/n)(1+(√(1+n^2 )))^(1/n) .((√(2+(√(4+n^2 )))))^(1/n) ......((√(n+(√(n^2  +n^2 )))))^(1/n)   ⇒ U_n =(1/n)(Π_(k=1) ^n (k+(√(k^2 +n^2 ))))^(1/n)  =  =(1/n){Π_(k=1) ^n (k+n(√((k^2 /n^2 )+1)))}^(1/n)  =(1/n){n^n  Π_(k=1) ^n ((k/n)+(√(1+((k/n))^2 )))}^(1/n)   =(Π_(k=1) ^n ((k/n)+(√(1+((k/n))^2 )))^(1/n)  ⇒ln(U_n ) =(1/n)Σ_(k=1) ^n ln((k/n)+(√(1+((k/n))^2 )))  ⇒lim_(n→+∞) ln(U_n ) =∫_0 ^1 ln(x+(√(1+x^2 )))dx   we have  ∫_0 ^1 ln(x+(√(1+x^2 )))dx =[xln(x+(√(1+x^2 )))]_0 ^1 −∫_0 ^1 x.(dx/(√(1+x^2 )))  =ln(1+(√2))−[(√(1+x^2 ))]_0 ^1   =ln(1+(√2))−((√2)−1)  ⇒lim_(n→+∞)  U_n =e^(ln(1+(√2))+1−(√2))   =(1+(√2))e^(1−(√2))   =S

letUn=1n(1+1+n2)1n.(2+4+n2)1n......(n+n2+n2)1nUn=1n(k=1n(k+k2+n2))1n==1n{k=1n(k+nk2n2+1)}1n=1n{nnk=1n(kn+1+(kn)2)}1n=(k=1n(kn+1+(kn)2)1nln(Un)=1nk=1nln(kn+1+(kn)2)limn+ln(Un)=01ln(x+1+x2)dxwehave01ln(x+1+x2)dx=[xln(x+1+x2)]0101x.dx1+x2=ln(1+2)[1+x2]01=ln(1+2)(21)limn+Un=eln(1+2)+12=(1+2)e12=S

Terms of Service

Privacy Policy

Contact: info@tinkutara.com