Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115507 by mnjuly1970 last updated on 26/Sep/20

           ....   ...matematical analysis...             prove that :::                                 a>0 ::    [((i :  ∫_(0 ) ^( ∞) ((sin^2 (ax))/x^(3/2) ) dx= (√(πa)))),((ii:   ∫_0 ^( ∞) ((sin^3 (ax))/( (√x))) dx = ((−1+3(√(3 )))/4) (√((π/(6a))  )) )) ]                                 ...m.n.july.1970...

.......matematicalanalysis... provethat::: a>0::[i:0sin2(ax)x32dx=πaii:0sin3(ax)xdx=1+334π6a] ...m.n.july.1970...

Answered by mathdave last updated on 26/Sep/20

(1) let I=∫_0 ^∞ ((sin^2 (ax))/x^(3/2) )dx=∫_0 ^∞ ((sin(2ax))/x^(3/2) )=((πa^(n−1) )/(2Γ(n)sin(((πn)/2))))(call maz identity)  I=((π(2a)^(1/2) )/(2.(1/2)(√(π.))sin(((3π)/4))))=(((√(aπ)).(√2))/(sin((π/4))))=(((√(aπ)).(√2))/(1/(√2)))=2 (√(aπ))  ∵∫_0 ^∞ ((sin^2 (ax))/x^(3/2) )dx=2(√(aπ))            Q.E.D  (2) let I=∫_0 ^∞ ((sin^3 (ax))/(√x))dx  but sin(3x)=3sinx−4sin^3 x,sin^3 x=((3sinx−sin(3x))/4)  I=(3/4)∫_0 ^∞ ((sin(ax))/x^(1/2) )dx−(1/4)∫_0 ^∞ ((sin(3ax))/x^(1/2) )dx  I=(3/4).((πa^(−(1/2)) )/(2(√π).sin((π/4))))−(1/4).((π(3a)^(−(1/2)) )/(2(√π).sin((π/4))))=(3/4).(((√π).(√2))/(2(√a)))−(1/4).(((√π).(√2))/(2(√(3a))))  I= ((3(√π))/(4(√(2a))))−((√π)/(4(√(6a)))) =((3(√3).(√π)−(√π))/(4(√(6a))))=(((−1+3(√3))(√π))/(4(√(6a))))=((−1+3(√3))/4)(√(π/(6a)))        ?  ∵∫_0 ^∞ ((sin^3 (ax))/(√x))dx=((−1+3(√3))/4)(√(π/(6a)))           Q.E.D  by mathdave(26/09/2020)

(1)letI=0sin2(ax)x32dx=0sin(2ax)x32=πan12Γ(n)sin(πn2)(callmazidentity) I=π(2a)122.12π.sin(3π4)=aπ.2sin(π4)=aπ.212=2aπ 0sin2(ax)x32dx=2aπQ.E.D (2)letI=0sin3(ax)xdx butsin(3x)=3sinx4sin3x,sin3x=3sinxsin(3x)4 I=340sin(ax)x12dx140sin(3ax)x12dx I=34.πa122π.sin(π4)14.π(3a)122π.sin(π4)=34.π.22a14.π.223a I=3π42aπ46a=33.ππ46a=(1+33)π46a=1+334π6a? 0sin3(ax)xdx=1+334π6aQ.E.D bymathdave(26/09/2020)

Commented bymnjuly1970 last updated on 26/Sep/20

thank you  maz identity   i:∫_0 ^( ∞) ((cos(x))/x^p ) dx =(π/(2Γ(p)cos(((pπ)/2))))   0<p<1       ii:∫_0 ^( ∞) ((sin(x))/x^p )dx =(π/(2Γ(p)sin(((pπ)/2))))  0<p≤1   murray  spiegel  advanced   calculus.....

thankyou mazidentity i:0cos(x)xpdx=π2Γ(p)cos(pπ2)0<p<1 ii:0sin(x)xpdx=π2Γ(p)sin(pπ2)0<p1 murrayspiegeladvanced calculus.....

Commented bymnjuly1970 last updated on 26/Sep/20

thanks a lot mr dave

thanksalotmrdave

Answered by Bird last updated on 28/Sep/20

I=∫_0 ^∞  ((sin^2 (ax))/x^(3/2) ) dx  ⇒I =_(ax =t)    ∫_0 ^∞  ((sin^2 t)/(((t/a))^(3/2) ))×(dt/a)  =a^((3/2)−1)  ∫_0 ^∞  ((sin^2 t)/t^(3/2) )dt  ==(√(a ))∫_0 ^∞   ((sin^2 t )/t^(3/2) )dt by parts  ∫_0 ^∞  t^(−(3/(2 )))  sin^2 t dt  =[(1/(1−(3/2))) t^(1−(3/2))  sin^2 t]_0 ^∞   −∫_0 ^∞   −2 t^(−(1/2))  ×2sint cost dt  =2 ∫_0 ^∞   ((sin(2t))/( (√t))) dt  =_((√t)=u)    2∫_0 ^∞  ((sin(2u^2 ))/u)(2u)du  =4 ∫_0 ^∞  sin(2u^2 )du  =−4 Im(∫_0 ^∞  e^(−2iu^2 ) du)  ∫_0 ^∞   e^(−((√(2i))u)^2 ) du =_((√(2i))u=z)   ∫_0 ^∞  e^(−z^2 ) (dz/( (√(2i))))  =(1/( (√2)))e^(−((iπ)/4))  ×((√π)/2)  =((√π)/(2(√2)))(((√2)/2)−((i(√2))/2))  =((√π)/4)−((i(√π))/4) ⇒  ∫_0 ^∞ t^(−(3/2)) sin^2 t dt =−4(−((√π)/4))=(√π)  ⇒I =(√a)×(√π) =(√(πa))

I=0sin2(ax)x32dx I=ax=t0sin2t(ta)32×dta =a3210sin2tt32dt ==a0sin2tt32dtbyparts 0t32sin2tdt =[1132t132sin2t]0 02t12×2sintcostdt =20sin(2t)tdt =t=u20sin(2u2)u(2u)du =40sin(2u2)du =4Im(0e2iu2du) 0e(2iu)2du=2iu=z0ez2dz2i =12eiπ4×π2 =π22(22i22) =π4iπ4 0t32sin2tdt=4(π4)=π I=a×π=πa

Commented bymnjuly1970 last updated on 28/Sep/20

thank you so much  sir math  bird..

thankyousomuchsirmath bird..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com