Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 115534 by Hassen_Timol last updated on 26/Sep/20

Let say r^((n))  = Π_(k=0) ^(n−1) (r−k) and r^((0)) =1  With n∈N and r∈R...  1.   Show that (n−1−r)^((n))  = (−1)^((n)) (r)^((n))   2. If m≤n, show that  (r^((n)) /r^((m)) )=(r−m)^((n−m))   3. Espress r^((n+m))  as w^((n)) w′^((m))   4. Show that (2r)^((2n)) =2^(2n) r^((n)) (r−(1/2))^((n))     Can you help me... please...

Letsayr(n)=n1k=0(rk)andr(0)=1WithnNandrR...1.Showthat(n1r)(n)=(1)(n)(r)(n)2.Ifmn,showthatr(n)r(m)=(rm)(nm)3.Espressr(n+m)asw(n)w(m)4.Showthat(2r)(2n)=22nr(n)(r12)(n)Canyouhelpme...please...

Commented by Hassen_Timol last updated on 26/Sep/20

Could you help me... I don′t understand?

Couldyouhelpme...Idontunderstand?

Answered by aleks041103 last updated on 26/Sep/20

1.  (n−1−r)^((n)) =Π_(k=0) ^(n−1) (n−1−r−k)=  =Π_(k=0) ^(n−1) ((n−1−k)−r)  let i=n−1−k, so if k∈[0,n−1] then  i∈[n−1,0]≡[0,n−1]  Π_(k=0) ^(n−1) ((n−1−k)−r)=Π_(i=0) ^(n−1) (i−r)=  =Π_(i=0) ^(n−1) (r−i)(−1)=Π_(i=0) ^(n−1) (r−i)Π_(i=0) ^(n−1) (−1)=  =r^((n)) (−1)^n   ⇒(n−1−r)^((n)) =(−1)^n r^((n))

1.(n1r)(n)=n1k=0(n1rk)==n1k=0((n1k)r)leti=n1k,soifk[0,n1]theni[n1,0][0,n1]n1k=0((n1k)r)=n1i=0(ir)==n1i=0(ri)(1)=n1i=0(ri)n1i=0(1)==r(n)(1)n(n1r)(n)=(1)nr(n)

Commented by Hassen_Timol last updated on 26/Sep/20

Thank you so much, it's very nice ! thanks a lot... if you know how to do for the other questions, it would be even more nice ! But once again, thanks a lot

Commented by aleks041103 last updated on 27/Sep/20

I′ll answer 3 and 4 later

Illanswer3and4later

Answered by aleks041103 last updated on 26/Sep/20

2.   (r^((n)) /r^((m)) )=((Π_(k=0) ^(n−1) (r−k))/(Π_(k=0) ^(m−1) (r−k)))=((Π_(k=0) ^(m−1) (r−k)Π_(k=m) ^(n−1) (r−k))/(Π_(k=0) ^(m−1) (r−k)))  =Π_(k=m) ^(n−1) (r−k)  let k=m+i, so if k∈[m,n−1] then  i∈[0,(n−m)−1]  (r^((n)) /r^((m)) )=Π_(i=0) ^((n−m)−1) (r−(m+i))=  =Π_(i=0) ^((n−m)−1) ((r−m)−i)=(r−m)^((n−m))   ⇒(r^((n)) /r^((m)) )=(r−m)^((n−m))

2.r(n)r(m)=n1k=0(rk)m1k=0(rk)=m1k=0(rk)n1k=m(rk)m1k=0(rk)=n1k=m(rk)letk=m+i,soifk[m,n1]theni[0,(nm)1]r(n)r(m)=(nm)1i=0(r(m+i))==(nm)1i=0((rm)i)=(rm)(nm)r(n)r(m)=(rm)(nm)

Commented by Hassen_Timol last updated on 26/Sep/20

Thank you very much !

Answered by aleks041103 last updated on 27/Sep/20

3.  r^((n+m)) =Π_(k=0) ^(n+m−1) (r−k)=  =Π_(k=0) ^(n−1) (r−k)Π_(k=n) ^(n+m−1) (r−k)=  =r^((n)) Π_(k=n) ^(n+m−1) (r−k)  let k=n+i so  Π_(k=n) ^(n+m−1) (r−k)=Π_(i=0) ^(m−1) (r−n−i)=(r−n)^((m))   ⇒r^((n+m)) =r^((n)) (r−n)^((m))   By analogy  r^((n+m)) =r^((m)) (r−m)^((n))   So  r^((n+m)) =(r−m)^((n)) r^((m)) =r^((n)) (r−n)^((m))

3.r(n+m)=n+m1k=0(rk)==n1k=0(rk)n+m1k=n(rk)==r(n)n+m1k=n(rk)letk=n+ison+m1k=n(rk)=m1i=0(rni)=(rn)(m)r(n+m)=r(n)(rn)(m)Byanalogyr(n+m)=r(m)(rm)(n)Sor(n+m)=(rm)(n)r(m)=r(n)(rn)(m)

Answered by aleks041103 last updated on 27/Sep/20

4.  (2r)^((2n)) =Π_(k=0) ^(2n−1) (2r−k)=Π_(k=0) ^(2n−1) (r−(k/2))2=  =2^(2n) Π_(k=0) ^(2n−1) (r−(k/2))  Π_(k=0) ^(2n−1) (r−(k/2))=  =Π_(k=0;even k) ^(2n−1) (r−(k/2))Π_(k=0;odd k) ^(2n−1) (r−(k/2))=  =Π_(k=0) ^(n−1) (r−((2k)/2))Π_(k=0) ^(n−1) (r−((2k+1)/2))=  =Π_(k=0) ^(n−1) (r−k)Π_(k=0) ^(n−1) (r−(1/2)−k)  =r^((n)) (r−(1/2))^((n))   ⇒(2r)^((2n)) =2^(2n) r^((n)) (r−(1/2))^((n))

4.(2r)(2n)=2n1k=0(2rk)=2n1k=0(rk2)2==22n2n1k=0(rk2)2n1k=0(rk2)==2n1k=0;evenk(rk2)2n1k=0;oddk(rk2)==n1k=0(r2k2)n1k=0(r2k+12)==n1k=0(rk)n1k=0(r12k)=r(n)(r12)(n)(2r)(2n)=22nr(n)(r12)(n)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com