Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 115541 by bobhans last updated on 26/Sep/20

 lim_(x→a)  (2−(x/a))^(tan (((πx)/(2a)))) =?

limxa(2xa)tan(πx2a)=?

Answered by bemath last updated on 26/Sep/20

L = lim_(x→a)  (2−(x/a))^(tan (((πx)/(2a))))   ln L=lim_(x→a)  ((ln (2−(x/a)))/(cot (((πx)/(2a)))))  ln L = lim_(x→a)  ((−(1/a))/(2−(x/a))) . (1/((−(π/(2a)) csc^2 (((πx)/a)))))  ln L = lim_(x→a)  ((2.sin^2 (((πx)/(2a))))/(π (((2a−x)/a)))) = (2/π)  L = e^(2/π)  = (e^2 )^(1/(π ))

L=limxa(2xa)tan(πx2a)lnL=limxaln(2xa)cot(πx2a)lnL=limxa1a2xa.1(π2acsc2(πxa))lnL=limxa2.sin2(πx2a)π(2axa)=2πL=e2π=e2π

Answered by Dwaipayan Shikari last updated on 26/Sep/20

lim_(x→a) (1+1−(x/a))^(tan(((πx)/(2a)))) =y  lim_(x→a) tan(((πx)/(2a)))log(1+1−(x/a))=logy  (1−(x/a))tan(((πx)/(2a)))=logy  (1−(x/a))sin(((πx)/(2a))).(1/(cos(((πx)/(2a)))))=logy  (1−(x/a))(1/(sin((π/2)−((πx)/(2a)))))=logy  (((1−(x/a)))/((π/2)(1−(x/a))))=logy  y=e^(2/π)

limxa(1+1xa)tan(πx2a)=ylimtanxa(πx2a)log(1+1xa)=logy(1xa)tan(πx2a)=logy(1xa)sin(πx2a).1cos(πx2a)=logy(1xa)1sin(π2πx2a)=logy(1xa)π2(1xa)=logyy=e2π

Answered by mnjuly1970 last updated on 26/Sep/20

 solution:                  1−(x/a) =t {_(t→0) ^(x→a)     lim_(t→0)  (1+t)^(tan[(π/2)(1−t)])   =lim_(t→0 ) (1+t)^(cot((π/2)t)) =_(t→0) ^(      sin((π/2)t)∽(π/2)t)   lim_(t→0) [((1+t)^(2/π) )^(1/t) ]^(cos((π/2)t)) =_(t→0) ^(cos((π/2)t)→1)        =e^(2/π)  ✓         m.n.july.1970

solution:1xa=t{t0xalimt0(1+t)tan[π2(1t)]=limt0(1+t)cot(π2t)=sin(π2t)π2tt0limt0[((1+t)2π)1t]cos(π2t)=cos(π2t)1t0=e2πm.n.july.1970

Terms of Service

Privacy Policy

Contact: info@tinkutara.com