All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 115541 by bobhans last updated on 26/Sep/20
limx→a(2−xa)tan(πx2a)=?
Answered by bemath last updated on 26/Sep/20
L=limx→a(2−xa)tan(πx2a)lnL=limx→aln(2−xa)cot(πx2a)lnL=limx→a−1a2−xa.1(−π2acsc2(πxa))lnL=limx→a2.sin2(πx2a)π(2a−xa)=2πL=e2π=e2π
Answered by Dwaipayan Shikari last updated on 26/Sep/20
limx→a(1+1−xa)tan(πx2a)=ylimtanx→a(πx2a)log(1+1−xa)=logy(1−xa)tan(πx2a)=logy(1−xa)sin(πx2a).1cos(πx2a)=logy(1−xa)1sin(π2−πx2a)=logy(1−xa)π2(1−xa)=logyy=e2π
Answered by mnjuly1970 last updated on 26/Sep/20
solution:1−xa=t{t→0x→alimt→0(1+t)tan[π2(1−t)]=limt→0(1+t)cot(π2t)=sin(π2t)∽π2tt→0limt→0[((1+t)2π)1t]cos(π2t)=cos(π2t)→1t→0=e2π✓m.n.july.1970
Terms of Service
Privacy Policy
Contact: info@tinkutara.com