Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 115555 by ZiYangLee last updated on 26/Sep/20

Given that x,y∈R ∀ x^2 −y^2 =32,  (x+y)^4 +(x−y)^4 =4352,   Find the value of x^2 +y^2 .

Giventhatx,yRx2y2=32,(x+y)4+(xy)4=4352,Findthevalueofx2+y2.

Commented by Rasheed.Sindhi last updated on 27/Sep/20

                 AnOther Way  (By changing into                            reciprocal form)  (x+y)^4 +(x−y)^4 =4352  (((x+y)^4 )/((x+y)^2 (x−y)^2 ))+(((x−y)^4 )/((x+y)^2 (x−y)^2 ))                                   =((4352)/((x+y)^2 (x−y)^2 ))  (((x+y)^2 )/((x−y)^2 ))+(((x−y)^2 )/((x+y)^2 ))=((4352)/((x^2 −y^2 )^2 ))  (((x+y)^2 )/((x−y)^2 ))+(((x−y)^2 )/((x+y)^2 ))=((4352)/((32)^2 ))=((17)/4)  (((x+y)^2 )/((x−y)^2 ))=z   z+(1/z)=((17)/4)  4z^2 −17z+4=0  (z−4)(4z−1)=0  z=4 ∨ z=(1/4)  (((x+y)^2 )/((x−y)^2 ))=4,(1/4)  (((x+y)^2 )/((32/(x+y))^2 ))=4,(1/4)  (x+y)^4 =4(32)^2   (x+y)^2 =±64  (x−y)^2 =(32/(x+y))^2 =32^2 /(±64)=±16  2(x^2 +y^2 )=(x+y)^2 +(x−y)^2   x^2 +y^2 =(1/2)(±64±16)=±40

AnOtherWay(Bychangingintoreciprocalform)(x+y)4+(xy)4=4352(x+y)4(x+y)2(xy)2+(xy)4(x+y)2(xy)2=4352(x+y)2(xy)2(x+y)2(xy)2+(xy)2(x+y)2=4352(x2y2)2(x+y)2(xy)2+(xy)2(x+y)2=4352(32)2=174(x+y)2(xy)2=zz+1z=1744z217z+4=0(z4)(4z1)=0z=4z=14(x+y)2(xy)2=4,14(x+y)2(32/(x+y))2=4,14(x+y)4=4(32)2(x+y)2=±64(xy)2=(32/(x+y))2=322/(±64)=±162(x2+y2)=(x+y)2+(xy)2x2+y2=12(±64±16)=±40

Answered by mr W last updated on 26/Sep/20

u=x+y  v=x−y  x^2 −y^2 =(x+y)(x−y)=32  ⇒uv=32  u^4 +v^4 =4352  u^4 +v^4 +2u^2 v^2 =4352+2(uv)^2   (u^2 +v^2 )^2 =4352+2×32^2 =6400=80^2   ⇒u^2 +v^2 =80  u^2 +v^2 +2uv=80+2(uv)  (u+v)^2 =80+2×32=144=12^2   ⇒u+v=±12  u^2 +v^2 −2uv=80−2(uv)  (u−v)^2 =80−2×32=16=4^2   ⇒u−v=±4  x=((u+v)/2)=±6  y=((u−v)/2)=±2  ⇒x^2 +y^2 =36+4=40

u=x+yv=xyx2y2=(x+y)(xy)=32uv=32u4+v4=4352u4+v4+2u2v2=4352+2(uv)2(u2+v2)2=4352+2×322=6400=802u2+v2=80u2+v2+2uv=80+2(uv)(u+v)2=80+2×32=144=122u+v=±12u2+v22uv=802(uv)(uv)2=802×32=16=42uv=±4x=u+v2=±6y=uv2=±2x2+y2=36+4=40

Commented by ZiYangLee last updated on 26/Sep/20

Thanks very much..

Thanksverymuch..

Answered by ruwedkabeh last updated on 26/Sep/20

(x+y)^4 +(x−y)^4 =4352,   x^4 +4x^3 y+6x^2 y^2 +4xy^3 +y^4 +x^4 −4x^3 y+6x^2 y^2 −4xy^3 +y^4 =4352  2x^4 +12x^2 y^2 +2y^4 =4352  x^4 +6x^2 y^2 +y^4 =2176  (x^2 −y^2 )^2 +8x^2 y^2 =2176  (32)^2 +8x^2 y^2 =2176  1024+8x^2 y^2 =2176  8x^2 y^2 =1152  x^2 y^2 =144    (x^2 +y^2 )^2 =(x^2 −y^2 )^2 +4x^2 y^2 =1024+576=1600  x^2 +y^2 =40

(x+y)4+(xy)4=4352,x4+4x3y+6x2y2+4xy3+y4+x44x3y+6x2y24xy3+y4=43522x4+12x2y2+2y4=4352x4+6x2y2+y4=2176(x2y2)2+8x2y2=2176(32)2+8x2y2=21761024+8x2y2=21768x2y2=1152x2y2=144(x2+y2)2=(x2y2)2+4x2y2=1024+576=1600x2+y2=40

Commented by ZiYangLee last updated on 26/Sep/20

Thank you!

Thankyou!

Answered by Olaf last updated on 26/Sep/20

(x+y)^4 +(x−y)^4  =  [(x+y)^2 +(x−y)^2 ]^2 −2(x+y)^2 (x−y)^2  =  (2x^2 +2y^2 )^2 −2(x^2 −y^2 )^2  =  4(x^2 +y^2 )^2 −2×32^2  = 4352  (x^2 +y^2 )^2  = ((4352+2048)/4) = ((6400)/4) = 1600  x^2 +y^2  = 40

(x+y)4+(xy)4=[(x+y)2+(xy)2]22(x+y)2(xy)2=(2x2+2y2)22(x2y2)2=4(x2+y2)22×322=4352(x2+y2)2=4352+20484=64004=1600x2+y2=40

Terms of Service

Privacy Policy

Contact: info@tinkutara.com