Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115558 by mnjuly1970 last updated on 26/Sep/20

       ... advanced   calculus...           evaluate ::                  ∫_0 ^( ∞) ln(1+ax^2 )ln(1+(b/x^2 ))dx         m.n.july

...advancedcalculus...evaluate::0ln(1+ax2)ln(1+bx2)dxm.n.july

Commented by sachin1221 last updated on 26/Sep/20

    show that  lim_(n→∞) (1/n)[((cos^(2p) π)/(2n))+((cos^(2p) 2π)/(2n))+((cos^(2p) 3π)/(2n))+.....((cos^(2p) π)/2)]=Π_(r=1) ^p ((p+r)/(4r))

showthatlimn1n[cos2pπ2n+cos2p2π2n+cos2p3π2n+.....cos2pπ2]=pr=1p+r4r

Commented by TANMAY PANACEA last updated on 26/Sep/20

i think some error in problem

ithinksomeerrorinproblem

Answered by Olaf last updated on 26/Sep/20

I = ∫_0 ^∞ ln(1+ax^2 )ln(1+(b/x^2 ))dx  a > 0, b > 0  I = (π/( (√a)))(−2(√(ab))+((√(ab))+1)[ln(1−ab)+2arctan(√(ab))])  (Wolfram)  I will try to find the demonstration  but it may take time !

I=0ln(1+ax2)ln(1+bx2)dxa>0,b>0I=πa(2ab+(ab+1)[ln(1ab)+2arctanab])(Wolfram)Iwilltrytofindthedemonstrationbutitmaytaketime!

Commented by mnjuly1970 last updated on 26/Sep/20

thank you for yor  attention an effort..

thankyouforyorattentionaneffort..

Answered by maths mind last updated on 27/Sep/20

∫ln(1+ax^2 )dx=xln(1+ax^2 )−∫((2ax^2 )/(1+ax^2 ))dx  =xln(1+ax^2 )−∫((2ax^2 +2−2)/(1+ax^2 ))dx  =xln(1+ax^2 )−2x+(2/( (√a)))∫(((√a)dx)/(1+((√a)x)^2 ))  =xln(1+ax^2 )−2x+(2/( (√a)))arctan(x(√a))  ∫_0 ^∞ ln(1+ax^2 )ln(1+(b/x^2 ))dx=G(a,b)∫  =[(xln(1+ax^2 )−2x+(2/( (√a)))arctan(x(√a))]ln(1+(b/x^2 ))]_0 ^∞   −∫_0 ^∞ (xln(1+ax^2 )−2x+(2/( (√a)))arctan(x(√a)))((−2b)/(x(x^2 +b)))dx  =2b{∫_0 ^∞ ((ln(1+ax^2 ))/((x^2 +b)))dx−∫_0 ^∞ (2/(x^2 +b))+(2/( (√a)))∫_0 ^∞ ((arcran(x(√a)))/(x(x^2 +b)))dx  ∫_0 ^∞ (2/(x^2 +b))dx=(2/( (√b)))∫(1/( (√b))).(dx/(1+((x/( (√b))))^2 ))=(2/( (√b))).(π/2)=(π/( (√b)))  ∫_0 ^∞ ((ln(1+ax^2 ))/((x^2 +b)))=f(a)⇒f′(a)=∫_0 ^∞ (x^2 /((1+ax^2 )(x^2 +b)))  a,b>0  =∫_0 ^∞ ((b(1+ax^2 )−(b+x^2 ))/((ba−1)(1+ax^2 )(x^2 +b)))dx=(b/(ba−1))∫_0 ^∞ (dx/(b+x^2 ))−(1/(ba−1))∫_0 ^∞ (dx/(1+ax^2 ))  =((√b)/( (ba−1)))(π/2)−(1/( (√a)(ba−1)))(π/2)  f(a)=(π/(2(√b)))ln(ba−1)+(π/( (√b)))th^− ((√(ab)))  ∫_0 ^∞ ((arctan(x(√a)))/(x(b+x^2 )))dx=s(a,b) let x=y(√(b  ))  s=∫_0 ^∞ ((arctan(y(√(ab))))/(b(1+y^2 )y))  ∫_0 ^∞ ((arcran(st))/(t(1+t^2 )))dt=f(s),f′(s)=∫_0 ^∞ (dt/((1+s^2 t^2 )(1+t^2 )))  .=(1/(1−s^2 ))∫_0 ^∞ ((1/(1+t^2 ))−(s^2 /(1+s^2 t^2 )))dt  =(π/(2(1−s^2 )))−(s/(1−s^2 )).(π/2)  f(s)=∫_0 ^s ((π/(2(1−s^2 ))−(π/2).(s/(1−s^2 )))ds=(π/2)th^− (s)+(π/2)ln((√(1−s^2 )))  ⇒∫_0 ^∞ ((arctan(x(√a)))/(x(x^2 +b)))=(1/b)((π/2)th^− ((√(ab)))+(π/2)ln((√(∣1−ab∣))))  ∫_0 ^∞ ln(1+ax^2 )ln(1+(b/x^2 ))=2b((π/(2(√b)))ln(∣ba−1∣)+(π/( (√b)))th^− ((√(ab))))  −2b.(π/( (√b)))+2b.(2/( (√a)))((1/b)((π/2)th^− ((√(ab)))+(π/4)ln(∣ba−1∣))  =π((√b)+(1/( (√a))))ln∣ba−1∣+π(2(√b)+(2/( (√a))))th^− ((√(ab)))−2π(√b)  =((π(−2(√(ab))+((√(ab))+1)ln∣ab−1∣+(2(√(ab))+2)th^− ((√(ab)))))/( (√a)))

ln(1+ax2)dx=xln(1+ax2)2ax21+ax2dx=xln(1+ax2)2ax2+221+ax2dx=xln(1+ax2)2x+2aadx1+(ax)2=xln(1+ax2)2x+2aarctan(xa)0ln(1+ax2)ln(1+bx2)dx=G(a,b)=[(xln(1+ax2)2x+2aarctan(xa)]ln(1+bx2)]00(xln(1+ax2)2x+2aarctan(xa))2bx(x2+b)dx=2b{0ln(1+ax2)(x2+b)dx02x2+b+2a0arcran(xa)x(x2+b)dx02x2+bdx=2b1b.dx1+(xb)2=2b.π2=πb0ln(1+ax2)(x2+b)=f(a)f(a)=0x2(1+ax2)(x2+b)a,b>0=0b(1+ax2)(b+x2)(ba1)(1+ax2)(x2+b)dx=bba10dxb+x21ba10dx1+ax2=b(ba1)π21a(ba1)π2f(a)=π2bln(ba1)+πbth(ab)0arctan(xa)x(b+x2)dx=s(a,b)letx=ybs=0arctan(yab)b(1+y2)y0arcran(st)t(1+t2)dt=f(s),f(s)=0dt(1+s2t2)(1+t2).=11s20(11+t2s21+s2t2)dt=π2(1s2)s1s2.π2f(s)=0s(π2(1s2π2.s1s2)ds=π2th(s)+π2ln(1s2)0arctan(xa)x(x2+b)=1b(π2th(ab)+π2ln(1ab))0ln(1+ax2)ln(1+bx2)=2b(π2bln(ba1)+πbth(ab))2b.πb+2b.2a(1b(π2th(ab)+π4ln(ba1))=π(b+1a)lnba1+π(2b+2a)th(ab)2πb=π(2ab+(ab+1)lnab1+(2ab+2)th(ab))a

Terms of Service

Privacy Policy

Contact: info@tinkutara.com