Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115594 by MJS_new last updated on 26/Sep/20

old question, I couldn′t find it:  ∫(√(x−(√x)))dx=?

oldquestion,Icouldntfindit:xxdx=?

Answered by MJS_new last updated on 26/Sep/20

∫(√(x−(√x)))dx=       [t=(√x) → dx=2(√x)dt]  =2∫t^(3/2) (√(t−1))dt=       [u=(√(t−1)) → dt=2(√(t−1))du]  =4∫u^2 (u^2 +1)^(3/2) du=       [v=u+(√(u^2 +1)) → du=((√(u^2 +1))/(u+(√(u^2 +1))))dv]  =(1/(16))∫((v^(12) +2v^(10) −v^8 −4v^6 −v^4 +2v^2 +1)/v^7 )dv=  =(v^6 /(96))+(v^4 /(32))−(v^2 /(32))+(1/(32v^2 ))−(1/(32v^4 ))−(1/(96v^6 ))−(1/4)ln v =       [v=u+(√(u^2 +1))∧u=(√(t−1))∧t=(√x)]  =(1/(12))(8x−2(√x)−3)(√(x−(√x)))−(1/4)ln ((√((√x)−1))+(x)^(1/4) ) +C

xxdx=[t=xdx=2xdt]=2t3/2t1dt=[u=t1dt=2t1du]=4u2(u2+1)3/2du=[v=u+u2+1du=u2+1u+u2+1dv]=116v12+2v10v84v6v4+2v2+1v7dv==v696+v432v232+132v2132v4196v614lnv=[v=u+u2+1u=t1t=x]=112(8x2x3)xx14ln(x1+x4)+C

Commented by Eric002 last updated on 27/Sep/20

nice work i think its q115498

niceworkithinkitsq115498

Terms of Service

Privacy Policy

Contact: info@tinkutara.com