Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 115595 by floor(10²Eta[1]) last updated on 26/Sep/20

Prove that, for all primes p>3,  13∣10^(2p) −10^p +1

Provethat,forallprimesp>3, 13102p10p+1

Answered by MJS_new last updated on 27/Sep/20

10^(6n) ≡1mod13  10^(6n+1) ≡10mod13  10^(6n+2) ≡9mod13  10^(6n+3) ≡12mod13  10^(6n+4) ≡3mod13  10^(6n+5) ≡4mod13  ⇒  amod13−bmod13+1mod13=0mod13  has the solutions  a=9∧b=10 or a=3∧b=4  ⇒ a=10^(6m+2) ∧b=10^(6n+1)  or a=10^(6m+4) ∧b=10^(6n+5)   ⇒  2p=6m+2∧p=6n+1 or 2p=6m+4∧p=6n+5  (1)  p=6n+1 ⇒ 2p=12n+2=6(2n)+1=6m+1  (2)  p=6n+5 ⇒ 2p=12n+10=6(2n+1)+4=6m+4  ⇒ both are true  ⇒  13∣10^(2p) −10^p +1 with p=6n+1∨p=6n+5  ⇔ p = any uneven number not divisible by 3  ⇒ all primes except 2, 3 are included in this  solution

106n1mod13 106n+110mod13 106n+29mod13 106n+312mod13 106n+43mod13 106n+54mod13 amod13bmod13+1mod13=0mod13 hasthesolutions a=9b=10ora=3b=4 a=106m+2b=106n+1ora=106m+4b=106n+5 2p=6m+2p=6n+1or2p=6m+4p=6n+5 (1) p=6n+12p=12n+2=6(2n)+1=6m+1 (2) p=6n+52p=12n+10=6(2n+1)+4=6m+4 botharetrue 13102p10p+1withp=6n+1p=6n+5 p=anyunevennumbernotdivisibleby3 allprimesexcept2,3areincludedinthis solution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com