Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 115597 by aurpeyz last updated on 26/Sep/20

Answered by 1549442205PVT last updated on 27/Sep/20

4a)Solve the equation:  (1/( (√(x+1))−(√x)))−(2/( (√(x−2))+(√x)))=(√(x−1))  ⇔(((√(x+1))+(√x))/1)−((2((√x)−(√(x−2))))/2)=(√(x−1))  ⇔(√(x+1))+(√x)−(√x)+(√(x−2))=(√(x−1))  ⇔(√(x+1))+(√(x−2))=(√(x−1)) (1)  We need the condition:x≥2.Then  (1)⇔x+1+x−2+2(√((x+1)(x−2)))=x−1  ⇔−x=2(√(x^2 −x−2))  This equation has no roots since  for ∀x≥2 ⇒LHS<0,RHS≥0  b)Prove that ∀a,b>0  2(a+b)((1/a^2 )+(1/b^2 ))((a^4 /b^2 )+(b^4 /a^2 ))≥16(√(ab)) (∗)  We have (1/a^2 )+(1/b^2 )=((1/a)−(1/b))^2 +(2/(ab))≥(2/(ab))(1)  (a^4 /b^2 )+(b^4 /a^2 )=((a^2 /b)−(b^2 /a))^2 +2ab(2)  a+b=((√(a−))(√b))^2 +2(√(ab))≥2(√(ab))  (3)  Multiplying three above inequalities  we get 2(a+b)((1/a^2 )+(1/b^2 ))((a^4 /b^2 )+(b^4 /a^2 ))  ≥2.(2/(ab)).2ab.2(√(ab))=16(√(ab)) .Hence,the  inequality (∗)is proved

4a)Solvetheequation:1x+1x2x2+x=x1x+1+x12(xx2)2=x1x+1+xx+x2=x1x+1+x2=x1(1)Weneedthecondition:x2.Then(1)x+1+x2+2(x+1)(x2)=x1x=2x2x2Thisequationhasnorootssinceforx2LHS<0,RHS0b)Provethata,b>02(a+b)(1a2+1b2)(a4b2+b4a2)16ab()Wehave1a2+1b2=(1a1b)2+2ab2ab(1)a4b2+b4a2=(a2bb2a)2+2ab(2)a+b=(ab)2+2ab2ab(3)Multiplyingthreeaboveinequalitiesweget2(a+b)(1a2+1b2)(a4b2+b4a2)2.2ab.2ab.2ab=16ab.Hence,theinequality()isproved

Answered by TANMAY PANACEA last updated on 27/Sep/20

x^4 +4x^3 +11x^2 +14x−30  81−4×27+99−42−30  180−108−72=0→so (x+3) is factor  x^4 +4x^3 +11x^2 +14x−30  =x^4 +3x^3 +x^3 +3x^2 +8x^2 +24x−10x−30  =x^3 (x+3)  +x^2  (x+3)  +8x (x+3)   −10(x+3)  =(x+3)(x^3 +x^2 +8x−10)  =(x+3)(x^3 +x^2 +8x−10)  so one root is x=−3  ★x^3 +x^2 +8x−10  =x^3 −x^2 +2x^2 −2x+10x−10  =x^2 (x−1) +2x (x−1)+10  (x−1)  =(x−1)(x^2 +2x+10)  another root x=1  x^2 +2x+10=0  x=((−2±(√(4−4×1×10)))/(2×1))=((−2±6i)/2)=−1±3i  so roots are (−3,1,−1±3i)

x4+4x3+11x2+14x30814×27+99423018010872=0so(x+3)isfactorx4+4x3+11x2+14x30=x4+3x3+x3+3x2+8x2+24x10x30=x3(x+3)+x2(x+3)+8x(x+3)10(x+3)=(x+3)(x3+x2+8x10)=(x+3)(x3+x2+8x10)soonerootisx=3x3+x2+8x10=x3x2+2x22x+10x10=x2(x1)+2x(x1)+10(x1)=(x1)(x2+2x+10)anotherrootx=1x2+2x+10=0x=2±44×1×102×1=2±6i2=1±3isorootsare(3,1,1±3i)

Answered by aurpeyz last updated on 26/Sep/20

4a

4a

Answered by TANMAY PANACEA last updated on 27/Sep/20

5x^5 +31x^4 +36x^3 +36x^2 +31x+5=0  5x^5 +5x^4 +26x^4 +26x^3 +10x^3 +10x^2 +26x^2 +26x+5x+5=0  5x^4 (x+1)  +26x^3 (x+1) +10x^2  (x+1) +26x (x+1)+5  (x+1)=0  (x+1)(5x^4 +26x^3 +10x^2 +26x+5)=0  x=−1  is one root  ★★now  5x^4 +26x^3 +10x^2 +26x+5=0→devide by x^2   5x^2 +(5/x^2 )+26x+((26)/x)+10=0  5{(x+(1/x))^2 −2}+26(x+(1/x))+10=0  5(x+(1/x))^2 +26(x+(1/x))=0  (x+(1/x))(5x+(5/x)+26)=0  (x+(1/x))=0→x^2 +1=0  x=±i  (5x+(5/x)+26)  5x^2 +5+26x=0  5x^2 +25x+x+5=0  5x(x+5)+1(x+5)=0  (x+5)(5x+1)=0→x=−5,((−1)/5)  so x=−1,−5,((−1)/5),±i

5x5+31x4+36x3+36x2+31x+5=05x5+5x4+26x4+26x3+10x3+10x2+26x2+26x+5x+5=05x4(x+1)+26x3(x+1)+10x2(x+1)+26x(x+1)+5(x+1)=0(x+1)(5x4+26x3+10x2+26x+5)=0x=1isonerootnow5x4+26x3+10x2+26x+5=0devidebyx25x2+5x2+26x+26x+10=05{(x+1x)22}+26(x+1x)+10=05(x+1x)2+26(x+1x)=0(x+1x)(5x+5x+26)=0(x+1x)=0x2+1=0x=±i(5x+5x+26)5x2+5+26x=05x2+25x+x+5=05x(x+5)+1(x+5)=0(x+5)(5x+1)=0x=5,15sox=1,5,15,±i

Terms of Service

Privacy Policy

Contact: info@tinkutara.com