Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 115604 by bemath last updated on 27/Sep/20

(1)lim_(x→(π/2))  ((cos 2x)/(tan x)) =?  (2) lim_(x→π)  (((√(2 +cos x)) −1)/((π−x)^2 )) = ?

(1)limxπ2cos2xtanx=?(2)limxπ2+cosx1(πx)2=?

Commented by Dwaipayan Shikari last updated on 27/Sep/20

lim_(x→π) ((2+cosx−1)/((π−x)^2 )).(1/( (√(2+cosx))+1))=(1/4) ((2cos^2 (x/2))/(((π/2)−(x/2))^2 )).(1/2)  =(1/4).((sin^2 ((π/2)−(x/2)))/(((π/2)−(x/2))^2 ))=(1/4)

limxπ2+cosx1(πx)2.12+cosx+1=142cos2x2(π2x2)2.12=14.sin2(π2x2)(π2x2)2=14

Answered by bobhans last updated on 27/Sep/20

(2) lim_(x→π)  (((−sin x)/(2(√(2+cos x))))/(−2(π−x))) = lim_(x→π)  (1/(4(√(2+cos x)))) ×lim_(x→π)  ((sin x)/(π−x))  =(1/4)×lim_(x→π)  ((cos x)/(−1)) = −(1/4)×(−1)=(1/4)

(2)limxπsinx22+cosx2(πx)=limxπ142+cosx×limxπsinxπx=14×limxπcosx1=14×(1)=14

Answered by Olaf last updated on 27/Sep/20

(2)  x = π−u  lim_(u→0) (((√(2−cosu))−1)/u^2 )  lim_(u→0) (((√(2−(1−(u^2 /2))))−1)/u^2 )  lim_(u→0) (((√(1+(u^2 /2)))−1)/u^2 )  lim_(u→0) ((1+(u^2 /4)−1)/u^2 )  lim_(u→0) ((u^2 /4)/u^2 ) = (1/4)

(2)x=πulimu02cosu1u2limu02(1u22)1u2limu01+u221u2limu01+u241u2limu0u24u2=14

Answered by mathmax by abdo last updated on 27/Sep/20

let f(x)=((cos(2x))/(tanx))  changement t =x−(π/2) give  f(x) =((cos(2(t+(π/2))))/(tan(t+(π/2)))) =−((cos(2t))/(−(1/(tant)))) =tant .cos(2t)  (x→(π/2) ⇒t →0) ⇒tan(t)∼t  and cos(2t) ∼1−2t^2  ⇒  tant.cos(2t)∼t(1−2t^2 )→0 ⇒lim_(x→(π/2)) f(x)=0

letf(x)=cos(2x)tanxchangementt=xπ2givef(x)=cos(2(t+π2))tan(t+π2)=cos(2t)1tant=tant.cos(2t)(xπ2t0)tan(t)tandcos(2t)12t2tant.cos(2t)t(12t2)0limxπ2f(x)=0

Answered by mathmax by abdo last updated on 27/Sep/20

2) let g(x)=(((√(2+cosx))−1)/((π−x)^2 ))  we do the changement π−x=t ⇒  g(x)=g(π−t) =(((√(2+cos(π−t)))−1)/t^2 ) =(((√(2−cost))−1)/t^2 )  we have cost ∼1−(t^2 /2) ⇒−cost ∼−1+(t^2 /2) ⇒2−cost ∼1+(t^2 /2)  ⇒(√(2−cost))∼(√(1+(t^2 /2)))∼1+(t^2 /4) ⇒g(π−t)∼(t^2 /(4t^2 ))=(1/4) ⇒  lim_(t→0)   g(π−t) =(1/4) =lim_(x→π)   g(x)

2)letg(x)=2+cosx1(πx)2wedothechangementπx=tg(x)=g(πt)=2+cos(πt)1t2=2cost1t2wehavecost1t22cost1+t222cost1+t222cost1+t221+t24g(πt)t24t2=14limt0g(πt)=14=limxπg(x)

Answered by bobhans last updated on 27/Sep/20

(1) set x = z+(π/2)  lim_(z→0)  ((cos (2z+π))/(tan (z+(π/2)))) = lim_(z→0)  ((−cos 2z)/(−cot z))  = lim_(z→0)  tan z. cos 2z = 0.

(1)setx=z+π2limz0cos(2z+π)tan(z+π2)=limz0cos2zcotz=limz0tanz.cos2z=0.

Answered by Olaf last updated on 27/Sep/20

lim_(x→(π/2))  cos2x = −1  lim_(x→(π/2))  tanx = ±∞  ⇒ lim_(x→(π/2))  ((cos2x)/(tanx)) = 0

limxπ2cos2x=1limxπ2tanx=±limxπ2cos2xtanx=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com