Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 115621 by sachin1221 last updated on 27/Sep/20

         ... advanced   calculus...          evaluate ::  show that lim_(n→∞) (1/n)[cos^(2p) (π/(2n))+cos^(2p) ((2π)/(2n))+cos^(2p) ((3π)/(2n))......cos^(2p) (π/2)] =Π_(r=1) ^p ((p+r)/(4r))

$$ \\ $$$$\:\:\:\:\:\:\:...\:{advanced}\:\:\:{calculus}...\: \\ $$$$\:\:\:\:\:\:\:{evaluate}\::: \\ $$$${show}\:{that}\:{lim}_{{n}\rightarrow\infty} \frac{\mathrm{1}}{{n}}\left[{cos}^{\mathrm{2}{p}} \frac{\pi}{\mathrm{2}{n}}+{cos}^{\mathrm{2}{p}} \frac{\mathrm{2}\pi}{\mathrm{2}{n}}+{cos}^{\mathrm{2}{p}} \frac{\mathrm{3}\pi}{\mathrm{2}{n}}......{cos}^{\mathrm{2}{p}} \frac{\pi}{\mathrm{2}}\right]\:=\underset{{r}=\mathrm{1}} {\overset{{p}} {\prod}}\frac{{p}+{r}}{\mathrm{4}{r}} \\ $$

Answered by TANMAY PANACEA last updated on 27/Sep/20

lim_(n→∞) (1/n)Σ_(r=1) ^n (cos((rπ)/(2n)))^(2p)   ∫_0 ^1 cos(((xπ)/2))^(2p) dx  t=((xπ)/2)→(dt/dx)=(π/2)  ∫_0 ^(π/2) cos^(2p) t×(2/π)dt  πI=2∫_0 ^(π/2) cos^(2p) t×sin^0 t dt  now i shall use gamma function  formula  2∫_0 ^(π/2) (sinθ)^(2m−1) (cosθ)^(2n−1) dθ=((⌈(m)⌈(n))/(⌈(m+n)))  ⌈→gamma operator  πI=2∫_(0 ) ^(π/2) (sint)^(2×(1/2)−1) (cost)^(2×((2p+1)/2)−1) dt  I=(1/π)×((⌈((1/2))×⌈(((2p+1)/2)))/(⌈((1/2)+((2p+1)/2))))

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}}\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\left({cos}\frac{{r}\pi}{\mathrm{2}{n}}\right)^{\mathrm{2}{p}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {cos}\left(\frac{{x}\pi}{\mathrm{2}}\right)^{\mathrm{2}{p}} {dx} \\ $$$${t}=\frac{{x}\pi}{\mathrm{2}}\rightarrow\frac{{dt}}{{dx}}=\frac{\pi}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{2}{p}} {t}×\frac{\mathrm{2}}{\pi}{dt} \\ $$$$\pi{I}=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{2}{p}} {t}×{sin}^{\mathrm{0}} {t}\:{dt} \\ $$$${now}\:{i}\:{shall}\:{use}\:{gamma}\:{function} \\ $$$${formula} \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sin}\theta\right)^{\mathrm{2}{m}−\mathrm{1}} \left({cos}\theta\right)^{\mathrm{2}{n}−\mathrm{1}} {d}\theta=\frac{\lceil\left({m}\right)\lceil\left({n}\right)}{\lceil\left({m}+{n}\right)} \\ $$$$\lceil\rightarrow{gamma}\:{operator} \\ $$$$\pi{I}=\mathrm{2}\int_{\mathrm{0}\:} ^{\frac{\pi}{\mathrm{2}}} \left({sint}\right)^{\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} \left({cost}\right)^{\mathrm{2}×\frac{\mathrm{2}{p}+\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {dt} \\ $$$$\boldsymbol{{I}}=\frac{\mathrm{1}}{\pi}×\frac{\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}\right)×\lceil\left(\frac{\mathrm{2}{p}+\mathrm{1}}{\mathrm{2}}\right)}{\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{2}{p}+\mathrm{1}}{\mathrm{2}}\right)} \\ $$

Commented by Rasheed.Sindhi last updated on 27/Sep/20

Sir tanmay are you ′tanmay  chaudhry′ an old member of the  forum?

$${Sir}\:{tanmay}\:{are}\:{you}\:'{tanmay} \\ $$$${chaudhry}'\:{an}\:{old}\:{member}\:{of}\:{the} \\ $$$${forum}? \\ $$

Commented by TANMAY PANACEA last updated on 27/Sep/20

yes sir i am the old member ...gor few months i was inactive

$${yes}\:{sir}\:{i}\:{am}\:{the}\:{old}\:{member}\:...{gor}\:{few}\:{months}\:{i}\:{was}\:{inactive} \\ $$

Commented by TANMAY PANACEA last updated on 27/Sep/20

read for  insted of gor

$${read}\:{for}\:\:{insted}\:{of}\:{gor} \\ $$

Commented by bemath last updated on 27/Sep/20

same sir. i′m old member too. my  age 87 year. hihihihi

$${same}\:{sir}.\:{i}'{m}\:{old}\:{member}\:{too}.\:{my} \\ $$$${age}\:\mathrm{87}\:{year}.\:{hihihihi} \\ $$

Commented by Ar Brandon last updated on 27/Sep/20

��I now remember you Mr Tanmay. You once helped me out with Q86830. Nice to meet you again Sir��

Commented by Ar Brandon last updated on 27/Sep/20

��BeMath stop kidding bro. I once had a look at your profile picture and you aren't that old��. You're a young guy. <20 years old I guess. You rather look good.�� Are you gonna tell me now that it was your grandson ? ��

Commented by bemath last updated on 27/Sep/20

oohh no bro

$${oohh}\:{no}\:{bro} \\ $$

Commented by Dwaipayan Shikari last updated on 27/Sep/20

An e^2.8 bro I am����

Commented by bemath last updated on 27/Sep/20

good. your is the santuy

$${good}.\:{your}\:{is}\:{the}\:{santuy} \\ $$

Commented by Rasheed.Sindhi last updated on 27/Sep/20

Thanks tanmay sir!

$$\mathcal{T}{hanks}\:{tanmay}\:{sir}! \\ $$

Answered by Ar Brandon last updated on 27/Sep/20

S=lim_(n→∞) (1/n)[cos^(2p) ((π/(2n)))+cos^(2p) (((2π)/(2n)))+cos^(2p) (((3π)/(2n)))+∙∙∙+cos^(2p) ((π/2))]     =lim_(n→∞) (1/n)Σ_(k=1) ^n cos^(2p) (((kπ)/(2n)))=∫_0 ^1 cos^(2p) (((πx)/2))dx  (Reimann′s Sum)  S=∫_0 ^1 cos^(2p) (((πx)/2))dx=(2/π)∫_0 ^(π/2) cos^(2p) (u)du  {setting ((πx)/2)=u}     =(2/π)[(1/2)∙(3/4)∙(5/6)∙∙∙((2p−5)/(2p−4))∙((2p−3)/(2p−2))∙((2p−1)/(2p))∙(π/2)]  (Walli′s method)     =(2/π)∙(π/2)∙Π_(r=0) ^(p−1) ((2p−(2r+1))/(2p−2r))=Π_(r=0) ^(p−1) ((2p−(2r+1))/(2p−2r))

$$\mathrm{S}=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{n}}\left[\mathrm{cos}^{\mathrm{2p}} \left(\frac{\pi}{\mathrm{2n}}\right)+\mathrm{cos}^{\mathrm{2p}} \left(\frac{\mathrm{2}\pi}{\mathrm{2n}}\right)+\mathrm{cos}^{\mathrm{2p}} \left(\frac{\mathrm{3}\pi}{\mathrm{2n}}\right)+\centerdot\centerdot\centerdot+\mathrm{cos}^{\mathrm{2p}} \left(\frac{\pi}{\mathrm{2}}\right)\right] \\ $$$$\:\:\:=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{cos}^{\mathrm{2p}} \left(\frac{\mathrm{k}\pi}{\mathrm{2n}}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{cos}^{\mathrm{2p}} \left(\frac{\pi{x}}{\mathrm{2}}\right)\mathrm{d}{x}\:\:\left({Reimann}'{s}\:{Sum}\right) \\ $$$$\mathrm{S}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{cos}^{\mathrm{2p}} \left(\frac{\pi{x}}{\mathrm{2}}\right)\mathrm{d}{x}=\frac{\mathrm{2}}{\pi}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{2p}} \left(\mathrm{u}\right)\mathrm{du}\:\:\left\{{setting}\:\frac{\pi{x}}{\mathrm{2}}=\mathrm{u}\right\} \\ $$$$\:\:\:=\frac{\mathrm{2}}{\pi}\left[\frac{\mathrm{1}}{\mathrm{2}}\centerdot\frac{\mathrm{3}}{\mathrm{4}}\centerdot\frac{\mathrm{5}}{\mathrm{6}}\centerdot\centerdot\centerdot\frac{\mathrm{2p}−\mathrm{5}}{\mathrm{2p}−\mathrm{4}}\centerdot\frac{\mathrm{2p}−\mathrm{3}}{\mathrm{2p}−\mathrm{2}}\centerdot\frac{\mathrm{2p}−\mathrm{1}}{\mathrm{2p}}\centerdot\frac{\pi}{\mathrm{2}}\right]\:\:\left({Walli}'{s}\:{method}\right) \\ $$$$\:\:\:=\frac{\mathrm{2}}{\pi}\centerdot\frac{\pi}{\mathrm{2}}\centerdot\underset{\mathrm{r}=\mathrm{0}} {\overset{\mathrm{p}−\mathrm{1}} {\prod}}\frac{\mathrm{2p}−\left(\mathrm{2r}+\mathrm{1}\right)}{\mathrm{2p}−\mathrm{2r}}=\underset{\mathrm{r}=\mathrm{0}} {\overset{\mathrm{p}−\mathrm{1}} {\prod}}\frac{\mathrm{2p}−\left(\mathrm{2r}+\mathrm{1}\right)}{\mathrm{2p}−\mathrm{2r}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com