Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 115761 by mnjuly1970 last updated on 28/Sep/20

      ....   advanced  calculus...               ...   evaluate ...                         Ψ= ∫_(−∞) ^( +∞) ((x/(2+2^(−x) +2^x )))^2 dx =???   m.n.july 70

....advancedcalculus......evaluate...Ψ=+(x2+2x+2x)2dx=???m.n.july70

Commented by Olaf last updated on 28/Sep/20

  Ψ = 2∫_0 ^∞ ((x/(2+2^(−x) +2^x )))^2 dx  u = 2^x  = e^(xln2)   du = ln2.e^(xln2) dx ⇒ dx = (du/(uln2))  Ψ = 2∫_1 ^∞ ((((lnu)/(ln2))/(2+(1/u)+u)))^2 (du/(uln2))  Ψ = (2/(ln^3 2))∫_1 ^∞ u(((lnu)/(u^2 +2u+1)))^2 du  Ψ = (2/(ln^3 2))∫_1 ^∞ u((ln^2 u)/((u+1)^4 ))du  (u/((u+1)^4 )) = (1/((u+1)^3 ))−(1/((u+1)^4 ))  Ψ = (2/(ln^3 2))[(−(1/(2(u+1)^2 ))+(1/(3(u+1)^3 )))ln^2 u]_1 ^∞   − (2/(ln^3 2))∫_1 ^∞ (−(1/(2(u+1)^2 ))+(1/(3(u+1)^3 )))2((lnu)/u)  Ψ =  (2/(ln^3 2))∫_1 ^∞ ((lnu)/(u(u+1)^2 ))du−(4/(3ln^3 2))∫_1 ^∞ ((lnu)/(u(u+1)^3 ))du  I = ∫_1 ^∞ ((lnu)/(u(u+1)^2 ))du  J = ∫_1 ^∞ ((lnu)/(u(u+1)^3 ))du  (1/(u(u+1)^2 )) = (1/u)−(1/(1+u))−(1/((1+u)^2 ))  (1/(u(u+1)^3 )) = (1/u)−(1/(1+u))−(1/((1+u)^2 ))−(1/((1+u)^3 ))  Ψ = (2/(ln^3 2))I−(4/(3ln^3 2))J  Ψ = (2/(3ln^3 2))[∫_1 ^∞ ((lnu)/u)du−∫_1 ^∞ ((lnu)/(1+u))du−∫_1 ^∞ ((lnu)/((1+u)^2 ))du]−(4/(3ln^3 2))∫_1 ^∞ ((lnu)/((1+u)^3 ))du  A_0  = ∫_1 ^∞ ((lnu)/u)du = ∞... ?  ... it′s probably false. I tried.

Ψ=20(x2+2x+2x)2dxu=2x=exln2du=ln2.exln2dxdx=duuln2Ψ=21(lnuln22+1u+u)2duuln2Ψ=2ln321u(lnuu2+2u+1)2duΨ=2ln321uln2u(u+1)4duu(u+1)4=1(u+1)31(u+1)4Ψ=2ln32[(12(u+1)2+13(u+1)3)ln2u]12ln321(12(u+1)2+13(u+1)3)2lnuuΨ=2ln321lnuu(u+1)2du43ln321lnuu(u+1)3duI=1lnuu(u+1)2duJ=1lnuu(u+1)3du1u(u+1)2=1u11+u1(1+u)21u(u+1)3=1u11+u1(1+u)21(1+u)3Ψ=2ln32I43ln32JΨ=23ln32[1lnuudu1lnu1+udu1lnu(1+u)2du]43ln321lnu(1+u)3duA0=1lnuudu=...?...itsprobablyfalse.Itried.

Answered by MJS_new last updated on 28/Sep/20

Ψ=2∫_0 ^∞ ((2^(2x) x^2 )/((2^x +1)^4 ))dx  solving the integral ∫((2^(2x) x^2 )/((2^x +1)^4 ))dx is easy:  (1) substitution t=2^x +1 and (2) solving  by parts; leading to  (1) (1/(ln^3  2)) ∫ ((t−1)/t^4 )ln^2  (t−1) dt  (2) ⇒  (1/(ln^3  2))((1/(3t))−(1/3)Li_2  (t−1) +((t−1)/(3t^2 ))(1+(((t−1)(t+2))/(2t))ln (t−1))ln (t−1) −(1/3)ln t ln (t−1))  but I cannot find an exact value for Ψ

Ψ=2022xx2(2x+1)4dxsolvingtheintegral22xx2(2x+1)4dxiseasy:(1)substitutiont=2x+1and(2)solvingbyparts;leadingto(1)1ln32t1t4ln2(t1)dt(2)1ln32(13t13Li2(t1)+t13t2(1+(t1)(t+2)2tln(t1))ln(t1)13lntln(t1))butIcannotfindanexactvalueforΨ

Commented by mnjuly1970 last updated on 29/Sep/20

very nice thank you  master...

verynicethankyoumaster...

Answered by maths mind last updated on 29/Sep/20

Ψ=2∫_0 ^∞ ((x^2 2^(2x) )/((1+2^(x+1) +2^(2x) )^2 ))dx  =2∫_0 ^∞ ((2^(2x) x^2 )/((1+2^x )^4 ))   let t=2^x ⇒x=((ln(t))/(ln(2))),dx=(dt/(tln(2)))  =(2/(ln^3 (2)))∫_1 ^∞ ((tln^2 (t))/((1+t)^4 ))dt,t=(1/s)  =(2/(ln^3 (2)))∫_0 ^1 ((sln^2 (s))/((1+s)^4 ))ds  =(2/(ln^3 (2)))∫_0 ^1 (((ln^2 (s))/((1+s)^3 ))−((ln^2 (s))/((1+s)^4 )))ds=(2/(ln^3 (2)))[I−J]  I=∫_0 ^1 ((ln^2 (s))/((1+s)^3 ))ds=lim_(x→0) [((−1)/(2(1+s)^2 ))ln^2 (s)]_x ^1 +∫_x ^1 ((ln(s))/(s(1+s)^2 ))ds  =lim_(x→0) ((ln^2 (x))/(2(1+x)^2 ))+∫_x ^1 ((((1+s)^2 −s(1+s)−s))/(s(1+s)^2 )))ln(s)ds  =lim_(x→0) ((ln^2 (x))/(2(1+x)^2 ))+∫_x ^1 ((ln(s))/s)ds−∫_0 ^1 ((ln(s))/(1+s))−∫_0 ^1 ((ln(s))/((s+1)^2 ))  =lim_(x→0) ((1/(2(1+x)^2 ))−(1/2))ln^2 (x)−∫_0 ^1 Σ_(k≥0) (−1)^k s^k ln(s)ds  −[[−((ln(s))/(1+s))]_x ^1 +∫_x ^1 (1/(s(s+1)))ds]  =Σ_(k≥0) (−1)^k (1/((k+1)^2 ))−lim_(x→0) {((ln(x))/(1+x))+∫_x ^1 (1/s)ds−∫_x ^1 (1/(s+1))dx}  I=(π^2 /(12))−lim_(x→0) {((ln(x))/(1+x))−ln(x)−ln(2)+ln(x+1)}=(π^2 /(12))+ln(2)  J=∫_0 ^1 ((ln^2 (s))/((1+s)^4 ))ds  =lim_(x→0) [−((ln^2 (s))/(3(1+s)^3 ))]_x ^1 +(2/3)∫_x ^1 ((ln(s))/(s(1+s)^3 ))ds]  (1/(s(1+s)^3 ))=(((1+s)^3 −s(1+s)^2 −s(1+s)−s)/(s(1+s)^3 ))  =lim_(x→0)  ((ln^2 (x))/(3(1+x)^3 ))+(2/3)∫_x ^1 (((ln(s))/s)−((ln(s))/(1+s))−((ln(s))/((1+s)^2 ))−((ln(s))/((1+s)^3 )))  =lim_(x→0) (((ln^2 (x))/(3(1+x)^3 ))−((ln^2 (x))/3))_(=0) −(2/3)∫_0 ^1 ((ln(s))/(1+s))ds−(2/3)∫_0 ^1 ((ln(s))/((1+s)^2 ))−(2/3)∫_0 ^1   =−(2/3)Σ(((−1)^k )/((k+1)^2 ))−(2/3).−ln(2)−(2/3)lim_(x→0) {[((−ln(s))/(2(1+s)^2 ))]_x ^1 +∫_x ^1 (1/(2s(1+s)^2 ))}  =(π^2 /(18))+((2ln(2))/3)−(2/3)lim_(x→0) [((ln(x))/(2(1+x)^2 ))+∫_x ^1 (((1+s)^2 −s(1+s)−s)/(2s(s+1)^2 ))ds  =(π^2 /(18))+((2ln(2))/3)−(2/3)[((ln(x))/(2(1+x)^2 ))+∫_x ^1 (1/(2s))ds−(1/2)∫_0 ^1 (1/(1+s))−(1/2)∫_0 ^1 (1/((1+s)^2 ))]  =(π^2 /(18))+((2ln(2))/3)−(2/3)lim_(x→0) {[((ln(x))/(2(1+x)^2 ))−((ln(x))/2)]_ −((ln(2))/2)+(1/2)((1/2)−1)]}  =(π^2 /(18))+((2ln(2))/3)+((ln(2))/3)+(1/(16))=(π^2 /(18))+ln(2)+(1/6)  Ψ=(2/(ln^3 (2)))[I−J]=(2/(ln^3 (2)))[(π^2 /(12))+ln(2)−((π^2 /(18))+ln(2)+(1/6))]  =(2/(ln^3 (2)))[((π^2 −6)/(36))]=((π^2 −6)/(18ln^3 (2)))

Ψ=20x222x(1+2x+1+22x)2dx=2022xx2(1+2x)4lett=2xx=ln(t)ln(2),dx=dttln(2)=2ln3(2)1tln2(t)(1+t)4dt,t=1s=2ln3(2)01sln2(s)(1+s)4ds=2ln3(2)01(ln2(s)(1+s)3ln2(s)(1+s)4)ds=2ln3(2)[IJ]I=01ln2(s)(1+s)3ds=limx0[12(1+s)2ln2(s)]x1+x1ln(s)s(1+s)2ds=limx0ln2(x)2(1+x)2+x1((1+s)2s(1+s)s)s(1+s)2)ln(s)ds=limx0ln2(x)2(1+x)2+x1ln(s)sds01ln(s)1+s01ln(s)(s+1)2=limx0(12(1+x)212)ln2(x)01k0(1)kskln(s)ds[[ln(s)1+s]x1+x11s(s+1)ds]=k0(1)k1(k+1)2limx0{ln(x)1+x+x11sdsx11s+1dx}I=π212limx0{ln(x)1+xln(x)ln(2)+ln(x+1)}=π212+ln(2)J=01ln2(s)(1+s)4ds=limx0[ln2(s)3(1+s)3]x1+23x1ln(s)s(1+s)3ds]1s(1+s)3=(1+s)3s(1+s)2s(1+s)ss(1+s)3=limx0ln2(x)3(1+x)3+23x1(ln(s)sln(s)1+sln(s)(1+s)2ln(s)(1+s)3)=limx0(ln2(x)3(1+x)3ln2(x)3)=02301ln(s)1+sds2301ln(s)(1+s)22301=23Σ(1)k(k+1)223.ln(2)23limx0{[ln(s)2(1+s)2]x1+x112s(1+s)2}=π218+2ln(2)323limx0[ln(x)2(1+x)2+x1(1+s)2s(1+s)s2s(s+1)2ds=π218+2ln(2)323[ln(x)2(1+x)2+x112sds120111+s12011(1+s)2]=π218+2ln(2)323limx0{[ln(x)2(1+x)2ln(x)2]ln(2)2+12(121)]}=π218+2ln(2)3+ln(2)3+116=π218+ln(2)+16Ψ=2ln3(2)[IJ]=2ln3(2)[π212+ln(2)(π218+ln(2)+16)]=2ln3(2)[π2636]=π2618ln3(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com