Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 115812 by mathdave last updated on 28/Sep/20

solve  lim_(x→∞) (ζ(x)−1)^(1/x)

$${solve} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\zeta\left({x}\right)−\mathrm{1}\right)^{\frac{\mathrm{1}}{{x}}} \\ $$

Commented by Dwaipayan Shikari last updated on 28/Sep/20

Is it lim_(x→∞) (ζ(x)−1)^(1/x) ??

$$\mathrm{Is}\:\mathrm{it}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\zeta\left(\mathrm{x}\right)−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} ?? \\ $$

Commented by mathdave last updated on 28/Sep/20

yes any idea

$${yes}\:{any}\:{idea} \\ $$

Commented by Dwaipayan Shikari last updated on 28/Sep/20

lim_(x→∞) (1+(1/2^x )+(1/3^x )+....−1)^(1/x) =((1/2^x )+(1/3^x )+...)^x =((1/2^x ))^(1/x) =(1/2)  (1/3^x )+(1/4^x )+...→0

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{x}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{x}} }+....−\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} =\left(\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{x}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{x}} }+...\right)^{\mathrm{x}} =\left(\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{x}} }\right)^{\frac{\mathrm{1}}{\mathrm{x}}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{x}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{x}} }+...\rightarrow\mathrm{0} \\ $$

Commented by Dwaipayan Shikari last updated on 29/Sep/20

As  x→∞  (1/3^x )+(1/4^x )+...→0  I take only (1/2^x ) to deal with. Others terms are so small

$$\mathrm{As}\:\:\mathrm{x}\rightarrow\infty \\ $$$$\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{x}} }+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{x}} }+...\rightarrow\mathrm{0} \\ $$$$\mathrm{I}\:\mathrm{take}\:\mathrm{only}\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{x}} }\:\mathrm{to}\:\mathrm{deal}\:\mathrm{with}.\:\mathrm{Others}\:\mathrm{terms}\:\mathrm{are}\:\mathrm{so}\:\mathrm{small} \\ $$

Answered by Bird last updated on 29/Sep/20

i found (1/2) isit correct?

$${i}\:{found}\:\frac{\mathrm{1}}{\mathrm{2}}\:{isit}\:{correct}? \\ $$

Commented by mathdave last updated on 29/Sep/20

it is correct

$${it}\:{is}\:{correct} \\ $$

Answered by Bird last updated on 29/Sep/20

we have ξ_k (x) =Σ_(n=1) ^k  (1/n^x ) ⇒  (ξ_k (x)−1)^(1/x)  =(Σ_(n=2) ^k   (1/n^x ))^(1/x)   =e^((1/x)ln((1/2^x )+(1/3^x )+...+(1/k^x )))   =e^((1/x)ln{(1/2^x )(1+((2/3))^x  +...+((2/k))^x )})   =e^((1/x){−xln2+ln(1+((2/3))^(x ) +...((2/k))^x })   =(1/2)e^((1/x)ln(1+((2/3))^x +...+((2/k))^x ))   ∼(1/2) e^((1/x)(((2/3))^x +((2/4))^x +...+((2/k))^x ) ) →(1/2)  for all k⇒lim_(x→+∞) lim_(k→+∞)   (ξ_k (x)−1)^(1/x)  =(1/2) ⇒  lim_(x→+∞) (ξ(x)−1)^(1/x)  =(1/2)

$${we}\:{have}\:\xi_{{k}} \left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{{k}} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\Rightarrow \\ $$$$\left(\xi_{{k}} \left({x}\right)−\mathrm{1}\right)^{\frac{\mathrm{1}}{{x}}} \:=\left(\sum_{{n}=\mathrm{2}} ^{{k}} \:\:\frac{\mathrm{1}}{{n}^{{x}} }\right)^{\frac{\mathrm{1}}{{x}}} \\ $$$$={e}^{\frac{\mathrm{1}}{{x}}{ln}\left(\frac{\mathrm{1}}{\mathrm{2}^{{x}} }+\frac{\mathrm{1}}{\mathrm{3}^{{x}} }+...+\frac{\mathrm{1}}{{k}^{{x}} }\right)} \\ $$$$={e}^{\frac{\mathrm{1}}{{x}}{ln}\left\{\frac{\mathrm{1}}{\mathrm{2}^{{x}} }\left(\mathrm{1}+\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{x}} \:+...+\left(\frac{\mathrm{2}}{{k}}\right)^{{x}} \right)\right\}} \\ $$$$={e}^{\frac{\mathrm{1}}{{x}}\left\{−{xln}\mathrm{2}+{ln}\left(\mathrm{1}+\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{x}\:} +...\left(\frac{\mathrm{2}}{{k}}\right)^{{x}} \right\}\right.} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{e}^{\frac{\mathrm{1}}{{x}}{ln}\left(\mathrm{1}+\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{x}} +...+\left(\frac{\mathrm{2}}{{k}}\right)^{{x}} \right)} \\ $$$$\sim\frac{\mathrm{1}}{\mathrm{2}}\:{e}^{\frac{\mathrm{1}}{{x}}\left(\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{x}} +\left(\frac{\mathrm{2}}{\mathrm{4}}\right)^{{x}} +...+\left(\frac{\mathrm{2}}{{k}}\right)^{{x}} \right)\:} \rightarrow\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${for}\:{all}\:{k}\Rightarrow{lim}_{{x}\rightarrow+\infty} {lim}_{{k}\rightarrow+\infty} \\ $$$$\left(\xi_{{k}} \left({x}\right)−\mathrm{1}\right)^{\frac{\mathrm{1}}{{x}}} \:=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow+\infty} \left(\xi\left({x}\right)−\mathrm{1}\right)^{\frac{\mathrm{1}}{{x}}} \:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by mnjuly1970 last updated on 30/Sep/20

nice  very nice

$${nice}\:\:{very}\:{nice} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com