All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 115815 by Ar Brandon last updated on 28/Sep/20
Montrerque∀(a,b,c)∈(R+∗)31a2+bc+1b2+ac+1c2+ab⩽12(1ab+1bc+1ac)
Answered by 1549442205PVT last updated on 29/Sep/20
Wehave:1a2+bc+1b2+ac+1c2+ab⩽12(1ab+1bc+1ac)⇔1a2+bc+1b2+ac+1c2+ab⩽a+b+c2abc(1)ApplyingCauchy′sinequalityfortwopositivenumberswehave:a2+bc⩾2abc,b2+ac⩾2bacc2+ab⩾2ab,itfollowsthatL.H.S⩽12abc+12bac+12cabHence,wejustneedprovethat:12abc+12bac+12cab⩽a+b+c2abc(2)⇔1a+1b+1c⩽a+b+cabc⇔ab+bc+ca⩽a+b+c⇔2(ab+bc+ca)⩽2(a+b+c)⇔(a−b)2+(b−c)2+(c−a)2⩾0Thisinequalityisalwaystrue∀a,b,c>0.Hence,(2)istrueinfer(1)istrue.Thus,thegiveninequalityisproved.Theequalityocurrsifandonlyifa=b=c.(Q.E.D)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com