Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 115961 by Ar Brandon last updated on 29/Sep/20

Commented by Dwaipayan Shikari last updated on 29/Sep/20

Indetermined

$$\mathrm{Indetermined} \\ $$

Commented by Ar Brandon last updated on 29/Sep/20

Have you taken note of the sign ? When x approaches 0 from below. Doesn't it make a difference ?

Commented by Dwaipayan Shikari last updated on 29/Sep/20

Commented by Ar Brandon last updated on 29/Sep/20

I tried using MacLaurine's expansion. But not very sure of my result. My solution is as follows :

Commented by Ar Brandon last updated on 29/Sep/20

L=lim_(x→−0) ((sinx−sin((1/x)))/(e^x −e^(1/x) ))  sinx≈x−(x^3 /(3!))⇒sin((1/x))≈(1/x)−(1/(3!x^3 ))  e^x ≈1+x+(x^2 /(2!))+(x^3 /(3!))⇒e^(1/x) ≈1+(1/x)+(1/(2!x^2 ))+(1/(3!x^3 ))  ⇒L=lim_(x→−0) (({x−(x^3 /(3!))}−{(1/x)−(1/(3!x^3 ))})/({1+x+(x^2 /(2!))+(x^3 /(3!))}−{1+(1/x)+(1/(2!x^2 ))+(1/(3!x^3 ))}))             =lim_(x→0) (({x^4 −(x^6 /(3!))}−{x^2 −(1/(3!))})/({x^4 +(x^5 /(2!))+(x^6 /(3!))}−{x^2 +(x/(2!))+(1/(3!))}))=−(1/(3!))÷(1/(3!))=−1

$$\mathscr{L}=\underset{{x}\rightarrow−\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}{x}−\mathrm{sin}\left(\frac{\mathrm{1}}{{x}}\right)}{\mathrm{e}^{{x}} −\mathrm{e}^{\frac{\mathrm{1}}{{x}}} } \\ $$$$\mathrm{sin}{x}\approx{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\Rightarrow\mathrm{sin}\left(\frac{\mathrm{1}}{{x}}\right)\approx\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{\mathrm{3}!{x}^{\mathrm{3}} } \\ $$$$\mathrm{e}^{{x}} \approx\mathrm{1}+{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\Rightarrow\mathrm{e}^{\frac{\mathrm{1}}{{x}}} \approx\mathrm{1}+\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{\mathrm{2}!{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}!{x}^{\mathrm{3}} } \\ $$$$\Rightarrow\mathscr{L}=\underset{{x}\rightarrow−\mathrm{0}} {\mathrm{lim}}\frac{\left\{{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\right\}−\left\{\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{\mathrm{3}!{x}^{\mathrm{3}} }\right\}}{\left\{\mathrm{1}+{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\right\}−\left\{\mathrm{1}+\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{\mathrm{2}!{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}!{x}^{\mathrm{3}} }\right\}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left\{{x}^{\mathrm{4}} −\frac{{x}^{\mathrm{6}} }{\mathrm{3}!}\right\}−\left\{{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}!}\right\}}{\left\{{x}^{\mathrm{4}} +\frac{{x}^{\mathrm{5}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{6}} }{\mathrm{3}!}\right\}−\left\{{x}^{\mathrm{2}} +\frac{{x}}{\mathrm{2}!}+\frac{\mathrm{1}}{\mathrm{3}!}\right\}}=−\frac{\mathrm{1}}{\mathrm{3}!}\boldsymbol{\div}\frac{\mathrm{1}}{\mathrm{3}!}=−\mathrm{1} \\ $$

Commented by Dwaipayan Shikari last updated on 29/Sep/20

It is 3.14 =π am in India , now I have to sleep ����

Commented by Ar Brandon last updated on 29/Sep/20

Oh! I see. My expansions for sin((1/x)) and e^(1/x)   aren′t correct as this expansions are accurate  only when x→0 and (1/x)↛0 as x→0.

$$\mathrm{Oh}!\:\mathrm{I}\:\mathrm{see}.\:\mathrm{My}\:\mathrm{expansions}\:\mathrm{for}\:\mathrm{sin}\left(\frac{\mathrm{1}}{{x}}\right)\:\mathrm{and}\:\mathrm{e}^{\frac{\mathrm{1}}{{x}}} \\ $$$$\mathrm{aren}'\mathrm{t}\:\mathrm{correct}\:\mathrm{as}\:\mathrm{this}\:\mathrm{expansions}\:\mathrm{are}\:\mathrm{accurate} \\ $$$$\mathrm{only}\:\mathrm{when}\:{x}\rightarrow\mathrm{0}\:\mathrm{and}\:\frac{\mathrm{1}}{{x}}\nrightarrow\mathrm{0}\:\mathrm{as}\:{x}\rightarrow\mathrm{0}. \\ $$

Commented by Ar Brandon last updated on 30/Sep/20

Good Night��

Answered by Ar Brandon last updated on 30/Sep/20

L=lim_(x→0) ((sinx−sin((1/x)))/(e^x −e^(1/x) ))  sinx≈x−(x^3 /(3!)) , e^x ≈1+x+(x^2 /(2!))+(x^3 /(3!))  ⇒L=lim_(x→0) (({x−(x^3 /(3!))}−sin((1/x)))/({1+x+(x^2 /(2!))+(x^3 /(3!))}−e^(1/x) ))=lim_(x→0) ((−sin((1/x)))/(1−e^(1/x) ))  u=(1/x), x→+0 ⇒ u→+∞ , x→−0 ⇒ u→−∞  ⇒lim_(x→+0) ((−sin((1/x)))/(1−e^(1/x) ))=lim_(u→+∞) ((−sin(u))/(1−e^u ))=((−sin(u))/(−∞))=0 {−1≤sin(u)≤1}  ⇒lim_(x→−0) ((−sin((1/x)))/(1−e^(1/x) ))=lim_(u→−∞) ((−sin(u))/(1−e^u ))=((−sin(u))/(1−0))=[−1;1] (indetermined)

$$\mathscr{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}{x}−\mathrm{sin}\left(\frac{\mathrm{1}}{{x}}\right)}{\mathrm{e}^{{x}} −\mathrm{e}^{\frac{\mathrm{1}}{{x}}} } \\ $$$$\mathrm{sin}{x}\approx{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\:,\:\mathrm{e}^{{x}} \approx\mathrm{1}+{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!} \\ $$$$\Rightarrow\mathscr{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left\{{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\right\}−\mathrm{sin}\left(\frac{\mathrm{1}}{{x}}\right)}{\left\{\mathrm{1}+{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\right\}−\mathrm{e}^{\frac{\mathrm{1}}{{x}}} }=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{sin}\left(\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}−\mathrm{e}^{\frac{\mathrm{1}}{{x}}} } \\ $$$$\mathrm{u}=\frac{\mathrm{1}}{{x}},\:{x}\rightarrow+\mathrm{0}\:\Rightarrow\:\mathrm{u}\rightarrow+\infty\:,\:{x}\rightarrow−\mathrm{0}\:\Rightarrow\:\mathrm{u}\rightarrow−\infty \\ $$$$\Rightarrow\underset{{x}\rightarrow+\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{sin}\left(\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}−\mathrm{e}^{\frac{\mathrm{1}}{{x}}} }=\underset{\mathrm{u}\rightarrow+\infty} {\mathrm{lim}}\frac{−\mathrm{sin}\left(\mathrm{u}\right)}{\mathrm{1}−\mathrm{e}^{\mathrm{u}} }=\frac{−\mathrm{sin}\left(\mathrm{u}\right)}{−\infty}=\mathrm{0}\:\left\{−\mathrm{1}\leqslant\mathrm{sin}\left(\mathrm{u}\right)\leqslant\mathrm{1}\right\} \\ $$$$\Rightarrow\underset{{x}\rightarrow−\mathrm{0}} {\mathrm{lim}}\frac{−\mathrm{sin}\left(\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}−\mathrm{e}^{\frac{\mathrm{1}}{{x}}} }=\underset{\mathrm{u}\rightarrow−\infty} {\mathrm{lim}}\frac{−\mathrm{sin}\left(\mathrm{u}\right)}{\mathrm{1}−\mathrm{e}^{\mathrm{u}} }=\frac{−\mathrm{sin}\left(\mathrm{u}\right)}{\mathrm{1}−\mathrm{0}}=\left[−\mathrm{1};\mathrm{1}\right]\:\left(\mathrm{indetermined}\right) \\ $$

Answered by maths mind last updated on 30/Sep/20

x=(1/(2kπ+α)),k→−∞⇒x→0^− ,withe α∈[−(π/2),(π/2)]  ((sin(x)−sin((1/x)))/(e^x −e^(1/x) ))=((sin((1/(2kπ+α)))−sin(2kπ+α))/(e^(1/(2kπ+α)) −e^(2kπ+α) ))  sin(2kπ)=0,∀k∈Z  e^(1/(2kπ+α)) −e^(2kπ+α) →1  sin((1/(2kπ+α)))→0 sin(2kπ+α)=sin(α)  we get −sin(α)  depend in α ⇒ not unique Limite   no limite

$${x}=\frac{\mathrm{1}}{\mathrm{2}{k}\pi+\alpha},{k}\rightarrow−\infty\Rightarrow{x}\rightarrow\mathrm{0}^{−} ,{withe}\:\alpha\in\left[−\frac{\pi}{\mathrm{2}},\frac{\pi}{\mathrm{2}}\right] \\ $$$$\frac{{sin}\left({x}\right)−{sin}\left(\frac{\mathrm{1}}{{x}}\right)}{{e}^{{x}} −{e}^{\frac{\mathrm{1}}{{x}}} }=\frac{{sin}\left(\frac{\mathrm{1}}{\mathrm{2}{k}\pi+\alpha}\right)−{sin}\left(\mathrm{2}{k}\pi+\alpha\right)}{{e}^{\frac{\mathrm{1}}{\mathrm{2}{k}\pi+\alpha}} −{e}^{\mathrm{2}{k}\pi+\alpha} } \\ $$$${sin}\left(\mathrm{2}{k}\pi\right)=\mathrm{0},\forall{k}\in\mathbb{Z} \\ $$$${e}^{\frac{\mathrm{1}}{\mathrm{2}{k}\pi+\alpha}} −{e}^{\mathrm{2}{k}\pi+\alpha} \rightarrow\mathrm{1} \\ $$$${sin}\left(\frac{\mathrm{1}}{\mathrm{2}{k}\pi+\alpha}\right)\rightarrow\mathrm{0}\:{sin}\left(\mathrm{2}{k}\pi+\alpha\right)={sin}\left(\alpha\right) \\ $$$${we}\:{get}\:−{sin}\left(\alpha\right) \\ $$$${depend}\:{in}\:\alpha\:\Rightarrow\:{not}\:{unique}\:{Limite}\: \\ $$$${no}\:{limite} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com