All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 11608 by agni5 last updated on 29/Mar/17
Iff(x)=xtan−1(1x),x≠0=0,x=0showthatfiscountinousbutnotdifferentiableatx=0.
Answered by mrW1 last updated on 30/Mar/17
f(0)=0limx→0f(x)=limx→0xtan−1(1x)=(limx→0x)×(limx→0tan−11x)=0×(±π2)=0sincef(0)=limx→0f(x)⇒f(x)iscontinousatx=0.f′(x)=tan−1(1x)+x(11+1x2)(−1x2)=tan−1(1x)−x1+x2limx→−0f′(x)=−π2−0=−π2limx→+0f′(x)=π2−0=π2sincelimx→−0f′(x)≠limx→+0f′(x)⇒f(x)isnotdifferentiableatx=0.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com