Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 116093 by Engr_Jidda last updated on 30/Sep/20

Find the equation of a circle which touches  x−axis and the line y=x in the 1^(st)  quadrant.  Determine its centre and radius if it touches the line y+x=4.

Findtheequationofacirclewhichtouchesxaxisandtheliney=xinthe1stquadrant.Determineitscentreandradiusifittouchestheliney+x=4.

Answered by john santu last updated on 01/Oct/20

let P(2,b) be a centre point a circle  touches x−axis ; line y=x and y+x=4  (i) b = ((∣2−b∣)/( (√2))) ⇒2b^2 =4−4b+b^2         b^2 +4b−4=0; (b+2)^2 =8      b = 2(√2)−2  (ii) b = ((∣2+b−4∣)/( (√2))) ⇒b=2(√2) −2  so we have → { ((P(2, 2(√2) −2))),((r = 2(√2)−2)) :}  equation of a circle is   (x−2)^2 +(y−2(√2)+2)^2 =(2(√2)−2)^2   (x−2)^2 +(y−2(√2)+2)^2 =12−8(√2)

letP(2,b)beacentrepointacircletouchesxaxis;liney=xandy+x=4(i)b=2b22b2=44b+b2b2+4b4=0;(b+2)2=8b=222(ii)b=2+b42b=222sowehave{P(2,222)r=222equationofacircleis(x2)2+(y22+2)2=(222)2(x2)2+(y22+2)2=1282

Commented by bemath last updated on 01/Oct/20

Commented by bemath last updated on 01/Oct/20

great mr ”a farmer math”

greatmrafarmermath

Answered by 1549442205PVT last updated on 02/Oct/20

a)Suppose the equation of the circle C is  (x−a)^2 +(y−b)^2 =R^2 .Since C touches  the lines y=0 and y=x ,we infer the  equations (x−a)^2 +b^2 =R^2  (1)  and (x−a)^2 +(x−b)^2 =R^2  (2)has unique  root   (1)⇔x^2 −2ax+a^2 +b^2 −R^2 =0  with Δ′=a^2 −a^2 −b^2 +R^2 =R^2 −b^2   (2)⇔2x^2 −2(a+b)x+a^2 +b^2 −R^2 =0  with Δ′=(a+b)^2 −2a^2 −2b^2 +2R^2   =2R^2 −(a−b)^2 .Therefore,(1)(2)has  unique root if and only if   { ((R^2 −b^2 =0)),((2R^2 −(a−b)^2 =0)) :}⇔ { ((b=±R)),((a=±R±R(√2))) :} (∗)  Hence,the equations of C are:(four cases)  i)b=R⇒a=R(1±(√2))gives two the circles family:  (x−R(1+(√2)))^2 +(y−R)^2 =R^2 .  (x−R(1−(√2)))^2 +(y−R)^2 =R^2   ii)b=−R⇒a=R(−1±(√2))gives two the circles family:  [x−R(−1+(√2))]^2 +(y+R)^2 =R^2   [(x−R(−1−(√2))]^2 +(y+R)^2 =R^2   Example,R=1,b=1,a=1+(√2) ....  b)Now C touches to the x+y=4 if and  only if the equation (x−a)^2 +(4−x−b)^2 =R^2   ⇔2x^2 −2(a−b+4)x+a^2 +(b−4)^2 −R^2 =0  has unique root.  ⇔Δ′=(a−b+4)^2 −2a^2 −2(b−4)^2 +2R^2 =0  ⇔−a^2 +2(4−b)a−(4−b)^2 +2R^2 =0.From(∗)we get:  ⇔−a^2 +8a−2ab−b^2 +8b−16+(a−b)^2 =0  ⇔4(2−b)a+8b−16=0  ⇔(2−b)a+2b−4=0(3)  i)If b=2 then (3) is true⇒ R=2,a=2±2(√2)  ii)If b≠2 then (3)⇔a=2  Replace into (∗)we get:  R=(2/((1+(√2))))=2((√2)−1)=b,or R=(2/( (√2)−1))=2((√2)+1)=−b

a)SupposetheequationofthecircleCis(xa)2+(yb)2=R2.SinceCtouchesthelinesy=0andy=x,weinfertheequations(xa)2+b2=R2(1)and(xa)2+(xb)2=R2(2)hasuniqueroot(1)x22ax+a2+b2R2=0withΔ=a2a2b2+R2=R2b2(2)2x22(a+b)x+a2+b2R2=0withΔ=(a+b)22a22b2+2R2=2R2(ab)2.Therefore,(1)(2)hasuniquerootifandonlyif{R2b2=02R2(ab)2=0{b=±Ra=±R±R2()Hence,theequationsofCare:(fourcases)i)b=Ra=R(1±2)givestwothecirclesfamily:(xR(1+2))2+(yR)2=R2.(xR(12))2+(yR)2=R2ii)b=Ra=R(1±2)givestwothecirclesfamily:[xR(1+2)]2+(y+R)2=R2[(xR(12)]2+(y+R)2=R2Example,R=1,b=1,a=1+2....b)NowCtouchestothex+y=4ifandonlyiftheequation(xa)2+(4xb)2=R22x22(ab+4)x+a2+(b4)2R2=0hasuniqueroot.Δ=(ab+4)22a22(b4)2+2R2=0a2+2(4b)a(4b)2+2R2=0.From()weget:a2+8a2abb2+8b16+(ab)2=04(2b)a+8b16=0(2b)a+2b4=0(3)i)Ifb=2then(3)istrueR=2,a=2±22ii)Ifb2then(3)a=2Replaceinto()weget:R=2(1+2)=2(21)=b,orR=221=2(2+1)=b

Terms of Service

Privacy Policy

Contact: info@tinkutara.com