Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116112 by Lordose last updated on 01/Oct/20

show that   ∫_( 0) ^( ∞) ((lnx)/(1+x^2 ))dx = 0

$$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\: \\ $$$$\int_{\:\mathrm{0}} ^{\:\infty} \frac{\boldsymbol{\mathrm{lnx}}}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}\:=\:\mathrm{0} \\ $$$$ \\ $$

Answered by MJS_new last updated on 01/Oct/20

∫_0 ^1 ((ln x)/(1+x^2 ))dx=       [t=(1/x) → dx=−x^2 dt=−(dt/t^2 )]  =∫_∞ ^1 ((ln (1/t))/(1+(1/t^2 )))×−(dt/t^2 )=       [ln (1/t) =−ln t ∧ −∫_a ^b f(t)dt=∫_b ^a f(t)dt]  =−∫_1 ^∞ ((ln t)/(1+t^2 ))dt  ⇒  ∫_0 ^1 ((ln x)/(1+x^2 ))=−∫_1 ^∞ ((ln x)/(1+x^2 ))dx  ∫_0 ^1 ((ln x)/(1+x^2 ))+∫_1 ^∞ ((ln x)/(1+x^2 ))dx=0 ⇔ ∫_0 ^∞ ((ln x)/(1+x^2 ))dx=0       [∫_a ^b f(x)dx+∫_b ^c f(x)dx=∫_a ^c f(x)dx]

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{ln}\:{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{\mathrm{1}}{{x}}\:\rightarrow\:{dx}=−{x}^{\mathrm{2}} {dt}=−\frac{{dt}}{{t}^{\mathrm{2}} }\right] \\ $$$$=\underset{\infty} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{ln}\:\frac{\mathrm{1}}{{t}}}{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}×−\frac{{dt}}{{t}^{\mathrm{2}} }= \\ $$$$\:\:\:\:\:\left[\mathrm{ln}\:\frac{\mathrm{1}}{{t}}\:=−\mathrm{ln}\:{t}\:\wedge\:−\underset{{a}} {\overset{{b}} {\int}}{f}\left({t}\right){dt}=\underset{{b}} {\overset{{a}} {\int}}{f}\left({t}\right){dt}\right] \\ $$$$=−\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{\mathrm{ln}\:{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\Rightarrow \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{ln}\:{x}}{\mathrm{1}+{x}^{\mathrm{2}} }=−\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{\mathrm{ln}\:{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{ln}\:{x}}{\mathrm{1}+{x}^{\mathrm{2}} }+\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{\mathrm{ln}\:{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\mathrm{0}\:\Leftrightarrow\:\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{\mathrm{ln}\:{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\mathrm{0} \\ $$$$\:\:\:\:\:\left[\underset{{a}} {\overset{{b}} {\int}}{f}\left({x}\right){dx}+\underset{{b}} {\overset{{c}} {\int}}{f}\left({x}\right){dx}=\underset{{a}} {\overset{{c}} {\int}}{f}\left({x}\right){dx}\right] \\ $$

Answered by Bird last updated on 02/Oct/20

a eazy way by ch.x =tanθ ⇒  ∫_0 ^∞  ((lnx)/(1+x^2 ))dx =∫_0 ^(π/2) ((ln(tanθ))/(1+tan^2 θ))(1+tan^2 θ)dθ  =∫_0 ^(π/2) ln(sinθ)−∫_0 ^(π/2) ln(cosθ)dθ=0  because the integrals are equals

$${a}\:{eazy}\:{way}\:{by}\:{ch}.{x}\:={tan}\theta\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{lnx}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{ln}\left({tan}\theta\right)}{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\theta\right)−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cos}\theta\right){d}\theta=\mathrm{0} \\ $$$${because}\:{the}\:{integrals}\:{are}\:{equals} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com