Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 116136 by bemath last updated on 01/Oct/20

y′ =(y/x) +((2x^3  cos (x^2 ))/y)  where y((√π)) = 0

$$\mathrm{y}'\:=\frac{\mathrm{y}}{\mathrm{x}}\:+\frac{\mathrm{2x}^{\mathrm{3}} \:\mathrm{cos}\:\left(\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{y}} \\ $$$$\mathrm{where}\:\mathrm{y}\left(\sqrt{\pi}\right)\:=\:\mathrm{0} \\ $$

Answered by mindispower last updated on 01/Oct/20

(y/x)=z  y′=z+xz′  ⇒z+xz′=z+((2x^3 cos(x^2 ))/(xz))  ⇒z(xz′)=2x^2 cos(x^2 )  ⇒zz′=2xcos(x^2 )  ⇒∫zdz=∫2xcos(x^2 )dx  ⇔(z^2 /2)=sin(x^2 )+c  z=  +_− 2(√(sin(x^2 )+c))  y=  +_− z(√(sin(x^2 )+c))  y((√π))=+_− 2(√π).(√(sin(π)+c))=0⇒c=0  y(x)=  +_− 2(√(sin(x^2 )))

$$\frac{{y}}{{x}}={z} \\ $$$${y}'={z}+{xz}' \\ $$$$\Rightarrow{z}+{xz}'={z}+\frac{\mathrm{2}{x}^{\mathrm{3}} {cos}\left({x}^{\mathrm{2}} \right)}{{xz}} \\ $$$$\Rightarrow{z}\left({xz}'\right)=\mathrm{2}{x}^{\mathrm{2}} {cos}\left({x}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{zz}'=\mathrm{2}{xcos}\left({x}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\int{zdz}=\int\mathrm{2}{xcos}\left({x}^{\mathrm{2}} \right){dx} \\ $$$$\Leftrightarrow\frac{{z}^{\mathrm{2}} }{\mathrm{2}}={sin}\left({x}^{\mathrm{2}} \right)+{c} \\ $$$${z}=\:\:\underset{−} {+}\mathrm{2}\sqrt{{sin}\left({x}^{\mathrm{2}} \right)+{c}} \\ $$$${y}=\:\:\underset{−} {+}{z}\sqrt{{sin}\left({x}^{\mathrm{2}} \right)+{c}} \\ $$$${y}\left(\sqrt{\pi}\right)=\underset{−} {+}\mathrm{2}\sqrt{\pi}.\sqrt{{sin}\left(\pi\right)+{c}}=\mathrm{0}\Rightarrow{c}=\mathrm{0} \\ $$$${y}\left({x}\right)=\:\:\underset{−} {+}\mathrm{2}\sqrt{{sin}\left({x}^{\mathrm{2}} \right)} \\ $$$$ \\ $$$$ \\ $$

Answered by TANMAY PANACEA last updated on 01/Oct/20

(dy/dx)−(y/x)=((2x^3 cosx^2 )/y)  ((xdy−ydx)/(xdx×x^2 ))=((2cosx^2 )/(((y/x))))  d((y/x)).(y/x)=cosx^2 .dx^2   intregating  ∫((y/x))d((y/x))=∫cosx^2 .dx^2   (1/2)((y/x))^2 =sinx^2 +c

$$\frac{{dy}}{{dx}}−\frac{{y}}{{x}}=\frac{\mathrm{2}{x}^{\mathrm{3}} {cosx}^{\mathrm{2}} }{{y}} \\ $$$$\frac{{xdy}−{ydx}}{{xdx}×{x}^{\mathrm{2}} }=\frac{\mathrm{2}{cosx}^{\mathrm{2}} }{\left(\frac{{y}}{{x}}\right)} \\ $$$${d}\left(\frac{{y}}{{x}}\right).\frac{{y}}{{x}}={cosx}^{\mathrm{2}} .{dx}^{\mathrm{2}} \\ $$$${intregating} \\ $$$$\int\left(\frac{{y}}{{x}}\right){d}\left(\frac{{y}}{{x}}\right)=\int{cosx}^{\mathrm{2}} .{dx}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{y}}{{x}}\right)^{\mathrm{2}} ={sinx}^{\mathrm{2}} +{c} \\ $$

Answered by mathmax by abdo last updated on 01/Oct/20

y^′  =(y/x) +((2x^3 cos(x^2 ))/y)  let (y/x)=z ⇒y =xz ⇒y^(′ ) =z+xz^′   (e)⇒z+xz^′  =z +((2x^2  cos(x^2 ))/z) ⇒xzz^′  =2x^2 cos(x^2 ) ⇒  zz^′  =2xcos(x^2 ) ⇒∫ zz^′ dx =2∫ xcos(x^2 )dx =sin(x^2 )+c ⇒  (1/2)z^2  =sin(x^2 )+c ⇒z^2  =2sin(x^2 ) +2c ⇒z =+^− (√(2sin(x^2 )+λ))

$$\mathrm{y}^{'} \:=\frac{\mathrm{y}}{\mathrm{x}}\:+\frac{\mathrm{2x}^{\mathrm{3}} \mathrm{cos}\left(\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{y}}\:\:\mathrm{let}\:\frac{\mathrm{y}}{\mathrm{x}}=\mathrm{z}\:\Rightarrow\mathrm{y}\:=\mathrm{xz}\:\Rightarrow\mathrm{y}^{'\:} =\mathrm{z}+\mathrm{xz}^{'} \\ $$$$\left(\mathrm{e}\right)\Rightarrow\mathrm{z}+\mathrm{xz}^{'} \:=\mathrm{z}\:+\frac{\mathrm{2x}^{\mathrm{2}} \:\mathrm{cos}\left(\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{z}}\:\Rightarrow\mathrm{xzz}^{'} \:=\mathrm{2x}^{\mathrm{2}} \mathrm{cos}\left(\mathrm{x}^{\mathrm{2}} \right)\:\Rightarrow \\ $$$$\mathrm{zz}^{'} \:=\mathrm{2xcos}\left(\mathrm{x}^{\mathrm{2}} \right)\:\Rightarrow\int\:\mathrm{zz}^{'} \mathrm{dx}\:=\mathrm{2}\int\:\mathrm{xcos}\left(\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx}\:=\mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} \right)+\mathrm{c}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{z}^{\mathrm{2}} \:=\mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} \right)+\mathrm{c}\:\Rightarrow\mathrm{z}^{\mathrm{2}} \:=\mathrm{2sin}\left(\mathrm{x}^{\mathrm{2}} \right)\:+\mathrm{2c}\:\Rightarrow\mathrm{z}\:=\overset{−} {+}\sqrt{\mathrm{2sin}\left(\mathrm{x}^{\mathrm{2}} \right)+\lambda} \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 01/Oct/20

⇒y =+^− x(√(2sin(x^2 )+λ))   y((√π)) =0 ⇒+^− (√π)(√(0+λ))=0⇒λ =0 ⇒y =+^− (√(2sin(x^2 )))

$$\Rightarrow\mathrm{y}\:=\overset{−} {+}\mathrm{x}\sqrt{\mathrm{2sin}\left(\mathrm{x}^{\mathrm{2}} \right)+\lambda}\: \\ $$$$\mathrm{y}\left(\sqrt{\pi}\right)\:=\mathrm{0}\:\Rightarrow\overset{−} {+}\sqrt{\pi}\sqrt{\mathrm{0}+\lambda}=\mathrm{0}\Rightarrow\lambda\:=\mathrm{0}\:\Rightarrow\mathrm{y}\:=\overset{−} {+}\sqrt{\mathrm{2sin}\left(\mathrm{x}^{\mathrm{2}} \right)} \\ $$

Commented by mathmax by abdo last updated on 02/Oct/20

y =+^− x(√(2sin(x^2 )))

$$\mathrm{y}\:=\overset{−} {+}\mathrm{x}\sqrt{\mathrm{2sin}\left(\mathrm{x}^{\mathrm{2}} \right)} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com