Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 116284 by mnjuly1970 last updated on 02/Oct/20

             ...  calculus I ...       evaluate :          I := ∫_0 ^( (π/3)) log(1+(√3) tan(x))dx=???

...calculusI...evaluate:I:=0π3log(1+3tan(x))dx=???

Answered by Dwaipayan Shikari last updated on 02/Oct/20

I=∫_0 ^(π/3) log(cosx+(√3)sinx)−log(cosx)dx     =[∫_0 ^(π/3) log(sin((π/6)+x))−log(cosx)]→(I_0 )+∫_0 ^(π/3) log(2)dx  =[∫_0 ^(π/3) log(sinx((π/2)−x))−log(cos((π/3)−x))]→(I_0 )+(π/3)log(2)  2I_0 =∫_0 ^(π/3) log(cosx)−log(cosx)+(1/2)cosx−(1/2)cosx+((√3)/2)sinx−((√3)/2)sinx  I_0 =0  So  I=I_0 +(π/3)log(2)  I=(π/3)log(2)

I=0π3log(cosx+3sinx)log(cosx)dx=[0π3log(sin(π6+x))log(cosx)](I0)+0π3log(2)dx=[0π3log(sinx(π2x))log(cos(π3x))](I0)+π3log(2)2I0=0π3log(cosx)log(cosx)+12cosx12cosx+32sinx32sinxI0=0SoI=I0+π3log(2)I=π3log(2)

Commented by mnjuly1970 last updated on 02/Oct/20

nice very nice as  always...thank you...

niceveryniceasalways...thankyou...

Commented by Dwaipayan Shikari last updated on 02/Oct/20

��

Answered by mnjuly1970 last updated on 02/Oct/20

    I=^(∫_0 ^( a) f(x)dx=∫_0 ^( a) f(a−x)dx) ∫_0 ^( (π/3)) log(1+(√(3 )) ((((√3)−tan(x))/( 1+(√3)tan(x)))))dx  =∫_0 ^( (π/3)) log((4/(1+(√3)tan(x))))dx=(π/3)log(4)−I    ∴  I =(π/3) log(2)  ...✓        m.n.1970

I=0af(x)dx=0af(ax)dx0π3log(1+3(3tan(x)1+3tan(x)))dx=0π3log(41+3tan(x))dx=π3log(4)II=π3log(2)...m.n.1970

Answered by Bird last updated on 03/Oct/20

let g(a) =∫_0 ^(π/3) ln(1+atanx)dx ⇒  g^′ (a) =∫_0 ^(π/3)   ((tanx)/(1+atanx))dx  =(1/a)∫_0 ^(π/3)  ((1+atanx−1)/(1+atanx)) dx  =(π/(3a)) −(1/a)∫_0 ^(π/3) (dx/(1+atanx)) but  ∫_0 ^(π/3)  (dx/(1+atanx)) =_(tanx=t)   ∫_0 ^(√3)  (dt/((1+t^2 )(1+at)))  let decompose F(t) =(1/((at+1)(t^2 +1)))  F(t) =(α/(at+1)) +((mt+n)/(t^2  +1))  α =(1/((1/a^2 )+1)) =(a^2 /(1+a^2 ))  lim_(t→+∞) tF(t) =0 =(α/a) +m ⇒  m=−(α/a) =−(a/(1+a^2 ))  F(0)=1 =α +n ⇒n=1−α  =1−(a^2 /(1+a^2 )) =(1/(1+a^2 ))  ⇒F(t)=(a^2 /((1+a^2 )(at+1)))+((−(a/(1+a^2 ))t+(1/(1+a^2 )))/(t^2  +1))  ⇒∫_0 ^(π/3)  (dx/(1+atanx))  =(a^2 /(1+a^2 ))∫_0 ^(√3)  (dt/(at +1))−(a/(1+a^2 ))∫_0 ^(√3) (t/(t^2  +1))dt  +(1/(1+a^2 )) ∫_0 ^(√3)  (dt/(1+t^2 ))  =(a/(1+a^2 ))[ln(at+1)]_0 ^(√3) −(a/(2(1+a^2 )))[ln(1+t^2 )]_0 ^(√3)   +(1/(1+a^2 ))×(π/3)  =(a/(1+a^2 ))ln(a(√3)+1)−(a/((1+a^2 )))ln2  +(π/(3(1+a^2 )))

letg(a)=0π3ln(1+atanx)dxg(a)=0π3tanx1+atanxdx=1a0π31+atanx11+atanxdx=π3a1a0π3dx1+atanxbut0π3dx1+atanx=tanx=t03dt(1+t2)(1+at)letdecomposeF(t)=1(at+1)(t2+1)F(t)=αat+1+mt+nt2+1α=11a2+1=a21+a2limt+tF(t)=0=αa+mm=αa=a1+a2F(0)=1=α+nn=1α=1a21+a2=11+a2F(t)=a2(1+a2)(at+1)+a1+a2t+11+a2t2+10π3dx1+atanx=a21+a203dtat+1a1+a203tt2+1dt+11+a203dt1+t2=a1+a2[ln(at+1)]03a2(1+a2)[ln(1+t2)]03+11+a2×π3=a1+a2ln(a3+1)a(1+a2)ln2+π3(1+a2)

Commented by Bird last updated on 03/Oct/20

⇒g^′ (a) =(π/(3a))−(1/a){(a/(1+a^2 ))ln(a(√3)+1)  −((aln2)/(1+a^2 ))+(π/(3(1+a^2 )))}  =(π/(3a))−((ln(a(√3)+1))/(1+a^2 )) +((ln2)/(1+a^2 ))−(π/(3a(1+a^2 )))  ⇒g(a) =(π/3)lna−∫((ln(a(√3)+1))/(1+a^2 ))da  +ln2 arctana−(π/3)∫  (da/(a(1+a^2 )))  ...be continued...

g(a)=π3a1a{a1+a2ln(a3+1)aln21+a2+π3(1+a2)}=π3aln(a3+1)1+a2+ln21+a2π3a(1+a2)g(a)=π3lnaln(a3+1)1+a2da+ln2arctanaπ3daa(1+a2)...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com