Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116311 by bemath last updated on 03/Oct/20

        ∫_0 ^(π/3)  ((sin 2x)/((sin x)^(4/3) )) dx

π30sin2x(sinx)43dx

Answered by bobhans last updated on 03/Oct/20

let sin x = u with  { ((u=((√3)/2))),((u=0)) :}  I = ∫_0 ^((√3)/2)  ((2u du)/u^(4/3) ) = 2∫_0 ^((√3)/2) u^(−(1/3))  du  I= 2[ (3/2)u^(2/3)  ]_0 ^((√3)/2) = 3(((√3)/2))^(2/3) =3((3/4))^(1/(3 ))   = 3 ((6/8))^(1/(3 ))  = ((3 (6)^(1/(3 )) )/2) .

letsinx=uwith{u=32u=0I=3/202uduu43=23/20u13duI=2[32u23]03/2=3(32)23=3343=3683=3632.

Answered by Bird last updated on 03/Oct/20

I =∫_0 ^(π/3)  ((2sinx cosx)/((sinx)^(4/3) ))dx  =_(sinx=t)    2∫_0 ^((√3)/2)   ((t(√(1−t^2 )))/t^(4/3) )(dt/( (√(1−t^2 ))))  =2 ∫_0 ^((√3)/2)   t^(1−(4/3))  dt =2 ∫_0 ^((√3)/2)  t^(−(1/3)) dt  =2[(1/(1−(1/3)))t^(1−(1/3)) ]_0 ^((√3)/2)   =2[(3/2)t^(2/3) ]_0 ^((√3)/2) =3((((√3)/2))^(2/3) )  =3(^3 (√(3/4)))

I=0π32sinxcosx(sinx)43dx=sinx=t2032t1t2t43dt1t2=2032t143dt=2032t13dt=2[1113t113]032=2[32t23]032=3((32)23)=3(334)

Answered by Dwaipayan Shikari last updated on 03/Oct/20

∫_0 ^(π/3) ((sin2x)/((sinx)^(4/3) ))dx  ∫_0 ^(π/3) ((2cosx)/(sin^(1/3) x))dx  =2∫_0 ^((√3)/2) (dt/t^(1/3) )=3[t^(2/3) ]^((√3)/2) =3(((√3)/2))^(2/3) =3^(4/3) ((1/2))^(2/3)

0π3sin2x(sinx)43dx0π32cosxsin13xdx=2032dtt13=3[t23]32=3(32)23=343(12)23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com