Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 116317 by bemath last updated on 03/Oct/20

  lim_(n→∞)  ((((√(n+1))+(√(n+2))+(√(n+3))+...+(√(2n−1)))/n^(3/2) ) ) =

$$\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\sqrt{\mathrm{n}+\mathrm{1}}+\sqrt{\mathrm{n}+\mathrm{2}}+\sqrt{\mathrm{n}+\mathrm{3}}+...+\sqrt{\mathrm{2n}−\mathrm{1}}}{\mathrm{n}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\right)\:= \\ $$

Answered by Bird last updated on 03/Oct/20

U_n  =(1/n^(3/2) )Σ_(k=1) ^(n−1) (√(n+k))  =(1/n^(3/2) ).(√n)Σ_(k=1) ^(n−1) (√(1+(k/n)))  =(1/n^((3/2)−(1/2)) )Σ_(k=1) ^(n−1) (√(1+(k/n)))  =(1/n)Σ_(k=1) ^(n−1) (√(1+(k/n)))→∫_0 ^1 (√(1+x))dx  ∫_0 ^1 (√(1+x))dx =_((√(1+x))=t)   ∫_1 ^(√2) t(2t)dt  =2 ∫_1 ^(√2) t^(2 ) dt =(2/3)[t^3 ]_1 ^(√2)   =(2/3){3(√2)−1} =2(√2)−(2/3)

$${U}_{{n}} \:=\frac{\mathrm{1}}{{n}^{\frac{\mathrm{3}}{\mathrm{2}}} }\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \sqrt{{n}+{k}} \\ $$$$=\frac{\mathrm{1}}{{n}^{\frac{\mathrm{3}}{\mathrm{2}}} }.\sqrt{{n}}\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \sqrt{\mathrm{1}+\frac{{k}}{{n}}} \\ $$$$=\frac{\mathrm{1}}{{n}^{\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}} }\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \sqrt{\mathrm{1}+\frac{{k}}{{n}}} \\ $$$$=\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \sqrt{\mathrm{1}+\frac{{k}}{{n}}}\rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{x}}{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{x}}{dx}\:=_{\sqrt{\mathrm{1}+{x}}={t}} \:\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} {t}\left(\mathrm{2}{t}\right){dt} \\ $$$$=\mathrm{2}\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} {t}^{\mathrm{2}\:} {dt}\:=\frac{\mathrm{2}}{\mathrm{3}}\left[{t}^{\mathrm{3}} \right]_{\mathrm{1}} ^{\sqrt{\mathrm{2}}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\left\{\mathrm{3}\sqrt{\mathrm{2}}−\mathrm{1}\right\}\:=\mathrm{2}\sqrt{\mathrm{2}}−\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$ \\ $$

Commented by john santu last updated on 03/Oct/20

typo = (2/3)(2(√2)−1)

$${typo}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{1}\right) \\ $$

Commented by Bird last updated on 03/Oct/20

yes thanks john

$${yes}\:{thanks}\:{john} \\ $$

Answered by Dwaipayan Shikari last updated on 03/Oct/20

(1/n)lim_(n→∞) ((√(1+(1/n)))+(√(1+(2/n)))  +.....)  lim_(n→∞) (1/n)Σ_(k=1) ^n ((√(1+(k/n))))  ∫_0 ^1 (√(1+x)) dx  =(2/3)[(1+x)^(3/2) ]_0 ^1 =(2/3)(2(√2)−1)

$$\frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}}}+\sqrt{\mathrm{1}+\frac{\mathrm{2}}{\mathrm{n}}}\:\:+.....\right) \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\sqrt{\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+\mathrm{x}}\:\mathrm{dx} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\left[\left(\mathrm{1}+\mathrm{x}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com