Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116318 by Bird last updated on 03/Oct/20

1) explicite f(a) =∫_(−∞) ^(+∞)  ((arctan(a+x))/(x^2  +4))dx  1) 1)calculate ∫_(−∞) ^(+∞)   ((arctan(1+x))/(x^2 +4))dx  and ∫_(−∞) ^(+∞)  ((arctan(3+x))/(x^2 +4))dx

1)explicitef(a)=+arctan(a+x)x2+4dx1)1)calculate+arctan(1+x)x2+4dxand+arctan(3+x)x2+4dx

Answered by Olaf last updated on 03/Oct/20

1)  F(x) = ∫_a ^b f(x,t)dt ⇒ F′(x) = ∫_a ^b (∂f/∂x)(x,t)dt  Here we have :  f′(a) = ∫_(−∞) ^(+∞) (1/(x^2 +4))×(1/((a+x)^2 +1))dx  f′(a) = ∫_(−∞) ^(+∞) [((Ax+B)/(x^2 +4))+((C(x+a)+D)/((x+a)^2 +1))]dx  A = −((2a)/((a^2 +1)(a^2 +9)))  B = ((a^2 −3)/((a^2 +1)(a^2 +9)))  C = ((2a)/((a^2 +1)(a^2 +9))) = −A  D = ((a^2 +3)/((a^2 +1)(a^2 +9)))  f′(a) = (A/2)[ln∣((x^2 +4)/((x+a)^2 +1))∣]_(−∞) ^(+∞)   +(B/2)[arctan((x/2))]_(−∞) ^(+∞) +D[arctan(x+a)]_(−∞) ^(+∞)   f′(a) = (π/2)B+πD  f′(a) = ((3π)/2).(1/(a^2 +9))  ⇒ f(a) = (π/2)arctan(a/3)+K  lim_(a→+∞) f(a) = (π^2 /4)+K  and lim_(a→+∞) f(a) = ∫_(−∞) ^(+∞) (π/2).(1/(x^2 +4))dx  lim_(a→+∞) f(a) = (π/4)[arctan(x/2)]_(−∞) ^(+∞)  = (π^2 /4)  ⇒ (π^2 /4)+K = (π^2 /4), K = 0  Finally f(a) = (π/2)arctan(a/3)  1)1)  ∫_(−∞) ^(+∞) ((arctan(1+x))/(x^2 +4))dx = f(1) = (π/2)arctan(1/3)  (arctan(1/3) = 0,322...)    ∫_(−∞) ^(+∞) ((arctan(3+x))/(x^2 +4))dx = f(3) = (π/2)arctan(1)  ∫_(−∞) ^(+∞) ((arctan(3+x))/(x^2 +4))dx = f(3) = (π^2 /8)    Please verify my calculous...

1)F(x)=abf(x,t)dtF(x)=abfx(x,t)dtHerewehave:f(a)=+1x2+4×1(a+x)2+1dxf(a)=+[Ax+Bx2+4+C(x+a)+D(x+a)2+1]dxA=2a(a2+1)(a2+9)B=a23(a2+1)(a2+9)C=2a(a2+1)(a2+9)=AD=a2+3(a2+1)(a2+9)f(a)=A2[lnx2+4(x+a)2+1]++B2[arctan(x2)]++D[arctan(x+a)]+f(a)=π2B+πDf(a)=3π2.1a2+9f(a)=π2arctana3+Klima+f(a)=π24+Kandlima+f(a)=+π2.1x2+4dxlima+f(a)=π4[arctanx2]+=π24π24+K=π24,K=0Finallyf(a)=π2arctana31)1)+arctan(1+x)x2+4dx=f(1)=π2arctan13(arctan13=0,322...)+arctan(3+x)x2+4dx=f(3)=π2arctan(1)+arctan(3+x)x2+4dx=f(3)=π28Pleaseverifymycalculous...

Commented by mathmax by abdo last updated on 03/Oct/20

thank you sir.

thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com