All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 116318 by Bird last updated on 03/Oct/20
1)explicitef(a)=∫−∞+∞arctan(a+x)x2+4dx1)1)calculate∫−∞+∞arctan(1+x)x2+4dxand∫−∞+∞arctan(3+x)x2+4dx
Answered by Olaf last updated on 03/Oct/20
1)F(x)=∫abf(x,t)dt⇒F′(x)=∫ab∂f∂x(x,t)dtHerewehave:f′(a)=∫−∞+∞1x2+4×1(a+x)2+1dxf′(a)=∫−∞+∞[Ax+Bx2+4+C(x+a)+D(x+a)2+1]dxA=−2a(a2+1)(a2+9)B=a2−3(a2+1)(a2+9)C=2a(a2+1)(a2+9)=−AD=a2+3(a2+1)(a2+9)f′(a)=A2[ln∣x2+4(x+a)2+1∣]−∞+∞+B2[arctan(x2)]−∞+∞+D[arctan(x+a)]−∞+∞f′(a)=π2B+πDf′(a)=3π2.1a2+9⇒f(a)=π2arctana3+Klima→+∞f(a)=π24+Kandlima→+∞f(a)=∫−∞+∞π2.1x2+4dxlima→+∞f(a)=π4[arctanx2]−∞+∞=π24⇒π24+K=π24,K=0Finallyf(a)=π2arctana31)1)∫−∞+∞arctan(1+x)x2+4dx=f(1)=π2arctan13(arctan13=0,322...)∫−∞+∞arctan(3+x)x2+4dx=f(3)=π2arctan(1)∫−∞+∞arctan(3+x)x2+4dx=f(3)=π28Pleaseverifymycalculous...
Commented by mathmax by abdo last updated on 03/Oct/20
thankyousir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com