Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 116329 by bemath last updated on 03/Oct/20

solve the diff equation    (1)(dy/dx) = ((x+3y−5)/(x−y−1))  (2) (3y−7x−3)dx+(7y−3x−7)dy=0

$$\mathrm{solve}\:\mathrm{the}\:\mathrm{diff}\:\mathrm{equation}\:\: \\ $$$$\left(\mathrm{1}\right)\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{x}+\mathrm{3y}−\mathrm{5}}{\mathrm{x}−\mathrm{y}−\mathrm{1}} \\ $$$$\left(\mathrm{2}\right)\:\left(\mathrm{3y}−\mathrm{7x}−\mathrm{3}\right)\mathrm{dx}+\left(\mathrm{7y}−\mathrm{3x}−\mathrm{7}\right)\mathrm{dy}=\mathrm{0} \\ $$

Answered by mr W last updated on 03/Oct/20

(1)  (dy/dx)=((x+3y−5)/(x−y−1))  let  x=u+a  y=v+b  ⇒x+3y−5=u+3v+a+3b−5  ⇒x−y−1=u−v+a−b−1  a+3b−5=0   ...(i)  a−b−1=0   ...(ii)  ⇒a=2  ⇒b=1  ⇒x=u+2  ⇒y=v+1  (dy/dx)=(dv/du)=((u+3v)/(u−v))  v=tu  (dv/du)=t+u(dt/du)=((1+3t)/(1−t))  u(dt/du)=((1+3t)/(1−t))−t=(((1+t)^2 )/(1−t))  ⇒(((1−t)dt)/((1+t)^2 ))=(du/u)  ⇒[(2/((1+t)^2 ))−(1/(1+t))]dt=(du/u)  ⇒−(2/(1+t))−ln (1+t)=ln u+C  ⇒ln u(1+t)=−((2/(1+t))+C)  ⇒u(1+t)=Ce^(−(2/(1+t)))   ⇒(x−2)(1+((y−1)/(x−2)))=Ce^(−(2/(1+((y−1)/(x−2)))))   ⇒x+y−3=Ce^(−((2(x−2))/(x+y−3)))   ⇒C(x−2)=((−2(x−2))/(x+y−3))e^(−((2(x−2))/(x+y−3)))   ⇒((−2(x−2))/(x+y−3))=W(C(x−2))  ⇒y=3−((2(x−2))/(W(C(x−2))))−x

$$\left(\mathrm{1}\right)\:\:\frac{{dy}}{{dx}}=\frac{{x}+\mathrm{3}{y}−\mathrm{5}}{{x}−{y}−\mathrm{1}} \\ $$$${let} \\ $$$${x}={u}+{a} \\ $$$${y}={v}+{b} \\ $$$$\Rightarrow{x}+\mathrm{3}{y}−\mathrm{5}={u}+\mathrm{3}{v}+{a}+\mathrm{3}{b}−\mathrm{5} \\ $$$$\Rightarrow{x}−{y}−\mathrm{1}={u}−{v}+{a}−{b}−\mathrm{1} \\ $$$${a}+\mathrm{3}{b}−\mathrm{5}=\mathrm{0}\:\:\:...\left({i}\right) \\ $$$${a}−{b}−\mathrm{1}=\mathrm{0}\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow{a}=\mathrm{2} \\ $$$$\Rightarrow{b}=\mathrm{1} \\ $$$$\Rightarrow{x}={u}+\mathrm{2} \\ $$$$\Rightarrow{y}={v}+\mathrm{1} \\ $$$$\frac{{dy}}{{dx}}=\frac{{dv}}{{du}}=\frac{{u}+\mathrm{3}{v}}{{u}−{v}} \\ $$$${v}={tu} \\ $$$$\frac{{dv}}{{du}}={t}+{u}\frac{{dt}}{{du}}=\frac{\mathrm{1}+\mathrm{3}{t}}{\mathrm{1}−{t}} \\ $$$${u}\frac{{dt}}{{du}}=\frac{\mathrm{1}+\mathrm{3}{t}}{\mathrm{1}−{t}}−{t}=\frac{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{\mathrm{1}−{t}} \\ $$$$\Rightarrow\frac{\left(\mathrm{1}−{t}\right){dt}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }=\frac{{du}}{{u}} \\ $$$$\Rightarrow\left[\frac{\mathrm{2}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{1}+{t}}\right]{dt}=\frac{{du}}{{u}} \\ $$$$\Rightarrow−\frac{\mathrm{2}}{\mathrm{1}+{t}}−\mathrm{ln}\:\left(\mathrm{1}+{t}\right)=\mathrm{ln}\:{u}+{C} \\ $$$$\Rightarrow\mathrm{ln}\:{u}\left(\mathrm{1}+{t}\right)=−\left(\frac{\mathrm{2}}{\mathrm{1}+{t}}+{C}\right) \\ $$$$\Rightarrow{u}\left(\mathrm{1}+{t}\right)={Ce}^{−\frac{\mathrm{2}}{\mathrm{1}+{t}}} \\ $$$$\Rightarrow\left({x}−\mathrm{2}\right)\left(\mathrm{1}+\frac{{y}−\mathrm{1}}{{x}−\mathrm{2}}\right)={Ce}^{−\frac{\mathrm{2}}{\mathrm{1}+\frac{{y}−\mathrm{1}}{{x}−\mathrm{2}}}} \\ $$$$\Rightarrow{x}+{y}−\mathrm{3}={Ce}^{−\frac{\mathrm{2}\left({x}−\mathrm{2}\right)}{{x}+{y}−\mathrm{3}}} \\ $$$$\Rightarrow{C}\left({x}−\mathrm{2}\right)=\frac{−\mathrm{2}\left({x}−\mathrm{2}\right)}{{x}+{y}−\mathrm{3}}{e}^{−\frac{\mathrm{2}\left({x}−\mathrm{2}\right)}{{x}+{y}−\mathrm{3}}} \\ $$$$\Rightarrow\frac{−\mathrm{2}\left({x}−\mathrm{2}\right)}{{x}+{y}−\mathrm{3}}=\mathbb{W}\left({C}\left({x}−\mathrm{2}\right)\right) \\ $$$$\Rightarrow{y}=\mathrm{3}−\frac{\mathrm{2}\left({x}−\mathrm{2}\right)}{\mathbb{W}\left({C}\left({x}−\mathrm{2}\right)\right)}−{x} \\ $$

Commented by bemath last updated on 03/Oct/20

W is Lambert W Function? thankyou  sir

$$\mathrm{W}\:\mathrm{is}\:\mathrm{Lambert}\:\mathrm{W}\:\mathrm{Function}?\:\mathrm{thankyou} \\ $$$$\mathrm{sir} \\ $$

Commented by mr W last updated on 03/Oct/20

yes, W for lambert W function!

$${yes},\:{W}\:{for}\:{lambert}\:{W}\:{function}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com