Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 116359 by bemath last updated on 03/Oct/20

If 0 < θ < (π/4) such that cosec θ−sec θ=((√(13))/6)  then cot θ−tan θ equals to __

If0<θ<π4suchthatcosecθsecθ=136 thencotθtanθequalsto__

Answered by bobhans last updated on 03/Oct/20

⇒ let sin θ cos θ = r . Then ((1/(sin θ)) −(1/(cos θ)))^2 = ((13)/(36))  ⇒ (((cos θ−sin θ)^2 )/((sin θ cos θ )^2 )) = ((13)/(36))  ⇒ ((1−2r)/r^2 ) = ((13)/(36)) ; 13r^2 +72r−36 = 0  ⇒(13r−6)(r+6)= 0 → { ((r=−6(rejected))),((r=(6/(13)))) :}  So we have sin θ cos θ = (6/(13)) and sin 2θ = ((12)/(13))  so cot θ−tan θ = ((2cos 2θ)/(sin 2θ)) = ((2×((5/(13))))/((((12)/(13))))) = (5/6)

letsinθcosθ=r.Then(1sinθ1cosθ)2=1336 (cosθsinθ)2(sinθcosθ)2=1336 12rr2=1336;13r2+72r36=0 (13r6)(r+6)=0{r=6(rejected)r=613 Sowehavesinθcosθ=613andsin2θ=1213 socotθtanθ=2cos2θsin2θ=2×(513)(1213)=56

Terms of Service

Privacy Policy

Contact: info@tinkutara.com