Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116385 by bemath last updated on 03/Oct/20

 ∫ ((xe^x )/( (√(1+e^x )))) dx

xex1+exdx

Answered by MJS_new last updated on 03/Oct/20

∫((e^x x)/( (√(e^x +1))))dx=       [t=(√(e^x +1)) → dx=((2(√(e^x +1)))/e^x )]  =2∫ln (t^2 −1) dt=2∫ln (t−1) dt+2∫ln (t+1) dt=  =2((t−1)ln (t−1) −t)+2((t+1)ln (t+1) −t)=  =2tln (t^2 −1) +2ln ((t+1)/(t−1)) −4t=  =2(x−2)(√(e^x +1))+2ln (e^x +2+2(√(e^x +1))) −2x+C

exxex+1dx=[t=ex+1dx=2ex+1ex]=2ln(t21)dt=2ln(t1)dt+2ln(t+1)dt==2((t1)ln(t1)t)+2((t+1)ln(t+1)t)==2tln(t21)+2lnt+1t14t==2(x2)ex+1+2ln(ex+2+2ex+1)2x+C

Answered by Dwaipayan Shikari last updated on 03/Oct/20

∫((xe^x )/( (√(1+e^x ))))dx                       1+e^x =t^2 ⇒e^x =2t(dt/dx)  ∫((x2tdt)/t)=2∫xdt=2∫log(t^2 −1)dt  2tlog(t^2 −1)−∫((4t^2 )/(t^2 −1))dt  2tlog(t^2 −1)−4t+2log(((t+1)/(t−1)))+C  2x(√(e^x +1)) −4(√(e^x +1))+2log((((√(e^x +1))+1)/( (√(e^x +1))−1)))+C  2((√(e^x +1))(x−2)+log((((√(e^x +1))+1)/( (√(e^x +1))−1)))+C_1 )

xex1+exdx1+ex=t2ex=2tdtdxx2tdtt=2xdt=2log(t21)dt2tlog(t21)4t2t21dt2tlog(t21)4t+2log(t+1t1)+C2xex+14ex+1+2log(ex+1+1ex+11)+C2(ex+1(x2)+log(ex+1+1ex+11)+C1)

Commented by MJS_new last updated on 03/Oct/20

−∫((4t^2 )/(t^2 −1))dt=−4t+2ln ((t+1)/(t−1))  beside this minor error your result is the  same as mine because  (((√(e^x +1))+1)/( (√(e^x +1))−1))=((e^x +2+2(√(e^x +1)))/e^x )  ⇒  2ln (((√(e^x +1))+1)/( (√(e^x +1))−1)) =−2x+2ln (e^x +2+2(√(e^x +1)))

4t2t21dt=4t+2lnt+1t1besidethisminorerroryourresultisthesameasminebecauseex+1+1ex+11=ex+2+2ex+1ex2lnex+1+1ex+11=2x+2ln(ex+2+2ex+1)

Commented by Dwaipayan Shikari last updated on 03/Oct/20

Thanking you for correction  .Yes i have noticed that result is  same

Thankingyouforcorrection.Yesihavenoticedthatresultissame

Answered by mathmax by abdo last updated on 03/Oct/20

I =∫  ((x e^x )/(√(1+e^x )))dx we do thechangement  (√(1+e^x ))=t ⇒1+e^x  =t^2  ⇒  e^x  =t^2 −1 ⇒x =ln(t^2 −1) ⇒  I =∫  ((ln(t^2 −1)(t^2 −1))/t)×((2tdt)/(t^2 −1)) =2 ∫ln(t^2 −1)dt  =_(by parts)      2{ t ln(t^2 −1)−∫  t.((2t)/(t^2 −1))dt}  =2t ln(t^2 −1)−4 ∫  ((t^2 −1+1)/(t^2 −1))dt  =2tln(t^2 −1)−4t −4 ∫ (dt/(t^2 −1))  =2tln(t^2 −1)−4t−2 ∫((1/(t−1))−(1/(t+1)))dt  =2t ln(t^2 −1)−4t −2ln∣((t−1)/(t+1))∣ +c  ⇒I =2x(√(1+e^x ))−4(√(1+e^x )) −2ln∣(((√(1+e^x ))−1)/((√(1+e^x ))+1))∣ +c

I=xex1+exdxwedothechangement1+ex=t1+ex=t2ex=t21x=ln(t21)I=ln(t21)(t21)t×2tdtt21=2ln(t21)dt=byparts2{tln(t21)t.2tt21dt}=2tln(t21)4t21+1t21dt=2tln(t21)4t4dtt21=2tln(t21)4t2(1t11t+1)dt=2tln(t21)4t2lnt1t+1+cI=2x1+ex41+ex2ln1+ex11+ex+1+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com