Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116391 by bobhans last updated on 03/Oct/20

∫ (dx/((x+1)(√x) )) ?

dx(x+1)x?

Commented by TANMAY PANACEA last updated on 03/Oct/20

how to post question...  here i am sharing intregation...Tanmay  ∫((sinθ)/(cos3θ))+((sin3θ)/(cos9θ))+((sin9θ)/(cos27θ)) dθ

howtopostquestion...hereiamsharingintregation...Tanmaysinθcos3θ+sin3θcos9θ+sin9θcos27θdθ

Commented by Dwaipayan Shikari last updated on 03/Oct/20

Tap + to post question

Tap+topostquestion

Commented by TANMAY PANACEA last updated on 03/Oct/20

ok thank you sir

okthankyousir

Commented by Dwaipayan Shikari last updated on 03/Oct/20

∫((sinθ)/(4cos^3 θ−3cosθ))+∫((sin3θ)/(4cos^3 3θ−3cos3θ))+∫((sin9θ)/(4cos^3 9θ−3cos9θ))  =∫((−dt)/(4t^3 −3t))−(1/3)∫(du/(4u^3 −3u))−(1/9)∫(dp/(4p^3 −3p))  ⇒∫((−dt)/(t(4t^2 −3)))=(1/3)∫(1/t)−((4t)/(4t^2 −3))=(1/3)log(t)−(1/6)log(4t^2 −3)  And similarly  −(1/3)∫(du/(4u^3 −3u))=(1/9)log(u)−(1/(18))log(4u^2 −3)  −(1/3)∫(dp/(4p^3 −3p))=(1/(27))log(p)−(1/(54))log(4p^2 −3)  Integral is  (1/3)(log(cosθ.cos^(1/3) θ.cos^(1/9) 9θ))−(1/6)(log((4cos^2 θ−3)(4cos^2 3θ−3)^(1/3) (4cos^2 9θ−3)^(1/9) )+C

sinθ4cos3θ3cosθ+sin3θ4cos33θ3cos3θ+sin9θ4cos39θ3cos9θ=dt4t33t13du4u33u19dp4p33pdtt(4t23)=131t4t4t23=13log(t)16log(4t23)Andsimilarly13du4u33u=19log(u)118log(4u23)13dp4p33p=127log(p)154log(4p23)Integralis13(log(cosθ.cos13θ.cos199θ))16(log((4cos2θ3)(4cos23θ3)13(4cos29θ3)19)+C

Commented by Dwaipayan Shikari last updated on 03/Oct/20

Kindly don′t tell me sir. I am a student.Thanking you

Kindlydonttellmesir.Iamastudent.Thankingyou

Commented by mnjuly1970 last updated on 03/Oct/20

  good for  you  nice solution  peace  be upon you...

goodforyounicesolutionpeacebeuponyou...

Commented by TANMAY PANACEA last updated on 03/Oct/20

tan3θ−tanθ  =((sin3θcosθ−sinθcos3θ)/(cos3θcosθ))=((2sinθcosθ)/(cos3θcosθ))  ((sinθ)/(cos3θ))=(1/2)[tan3θ−tanθ]  ((sin3θ)/(cos9θ))=(1/2)[tan9θ−tan3θ]  ((sin9θ)/(cos27θ))=(1/2)[tan27θ−tan9θ]  add them=(1/2)[tan27θ−tanθ]  so I=∫(1/2)(tan27θ−tanθ)dθ  =(1/2)[((lnsec27θ)/(27))−lnsecθ]+c

tan3θtanθ=sin3θcosθsinθcos3θcos3θcosθ=2sinθcosθcos3θcosθsinθcos3θ=12[tan3θtanθ]sin3θcos9θ=12[tan9θtan3θ]sin9θcos27θ=12[tan27θtan9θ]addthem=12[tan27θtanθ]soI=12(tan27θtanθ)dθ=12[lnsec27θ27lnsecθ]+c

Answered by bemath last updated on 03/Oct/20

 ∫ (dx/((x+1)(√x) )) ?   Letting x = h^2  →dx=2h dh  ∫ ((2h dh)/((h^2 +1).h)) = ∫ ((2 dh)/(h^2 +1)) = 2 tan^(−1) (h) + c   = 2tan^(−1) ((√x) ) + c

dx(x+1)x?Lettingx=h2dx=2hdh2hdh(h2+1).h=2dhh2+1=2tan1(h)+c=2tan1(x)+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com