Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 116397 by john santu last updated on 03/Oct/20

The number 1,2,3,4,...,7 are randomly  divided into two non −empty subsets.  The probability that the sum of the  numbers in the two subsets being  equal is (r/s) expressed in the lowest  term. Find r+s ?

$${The}\:{number}\:\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},...,\mathrm{7}\:{are}\:{randomly} \\ $$$${divided}\:{into}\:{two}\:{non}\:−{empty}\:{subsets}. \\ $$$${The}\:{probability}\:{that}\:{the}\:{sum}\:{of}\:{the} \\ $$$${numbers}\:{in}\:{the}\:{two}\:{subsets}\:{being} \\ $$$${equal}\:{is}\:\frac{{r}}{{s}}\:{expressed}\:{in}\:{the}\:{lowest} \\ $$$${term}.\:{Find}\:{r}+{s}\:? \\ $$

Answered by mr W last updated on 03/Oct/20

1+2+3+4+5+6+7=28  each subset should have the sum 14.    subsets with 1 number & 6 numbers:  n=C_1 ^7 =7 possibilities  n_S =0  subsets with 2 numbers & 5 numbers:  n=C_2 ^7 =21 possibilities  n_S =0  subsets with 3 numbers & 4 numbers:  n=C_3 ^7 =35 possibilities  7+3+4, 7+2+5, 7+1+6, 6+5+3=14  n_S =4    p=((0+0+4)/(7+21+35))=(4/(63))=(r/s)  ⇒r+s=4+63=67    we can also get the total number of  possibilities via {_2 ^7 }=63.

$$\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+\mathrm{7}=\mathrm{28} \\ $$$${each}\:{subset}\:{should}\:{have}\:{the}\:{sum}\:\mathrm{14}. \\ $$$$ \\ $$$${subsets}\:{with}\:\mathrm{1}\:{number}\:\&\:\mathrm{6}\:{numbers}: \\ $$$${n}={C}_{\mathrm{1}} ^{\mathrm{7}} =\mathrm{7}\:{possibilities} \\ $$$${n}_{{S}} =\mathrm{0} \\ $$$${subsets}\:{with}\:\mathrm{2}\:{numbers}\:\&\:\mathrm{5}\:{numbers}: \\ $$$${n}={C}_{\mathrm{2}} ^{\mathrm{7}} =\mathrm{21}\:{possibilities} \\ $$$${n}_{{S}} =\mathrm{0} \\ $$$${subsets}\:{with}\:\mathrm{3}\:{numbers}\:\&\:\mathrm{4}\:{numbers}: \\ $$$${n}={C}_{\mathrm{3}} ^{\mathrm{7}} =\mathrm{35}\:{possibilities} \\ $$$$\mathrm{7}+\mathrm{3}+\mathrm{4},\:\mathrm{7}+\mathrm{2}+\mathrm{5},\:\mathrm{7}+\mathrm{1}+\mathrm{6},\:\mathrm{6}+\mathrm{5}+\mathrm{3}=\mathrm{14} \\ $$$${n}_{{S}} =\mathrm{4} \\ $$$$ \\ $$$${p}=\frac{\mathrm{0}+\mathrm{0}+\mathrm{4}}{\mathrm{7}+\mathrm{21}+\mathrm{35}}=\frac{\mathrm{4}}{\mathrm{63}}=\frac{{r}}{{s}} \\ $$$$\Rightarrow{r}+{s}=\mathrm{4}+\mathrm{63}=\mathrm{67} \\ $$$$ \\ $$$${we}\:{can}\:{also}\:{get}\:{the}\:{total}\:{number}\:{of} \\ $$$${possibilities}\:{via}\:\left\{_{\mathrm{2}} ^{\mathrm{7}} \right\}=\mathrm{63}. \\ $$

Commented by john santu last updated on 04/Oct/20

yes..thank you

$${yes}..{thank}\:{you} \\ $$

Answered by john santu last updated on 04/Oct/20

The total number of ways of dividing    the seven numbers into two non−empty  subsets is ((2^7 −2)/2) = 63. Note that since  1+2+3+...+7=28 ,the sum of the   number in each of the two groups is 14.  Note also that numbers 5,6,7 cannot  be in the same group since 5+6+7=18>14  case(1) only 6 &7 in the same group and   5 the other group. {2,3,4,5},{1,6,7}  case(2) only 5 &6 in the same group and  7 in the other group . {1,2,5,6}, {3,4,7}   {3,5,6}, { 1,2,4,7 }  case(3) only 5 &7 in the same group and  6 in the other group . {2,5,7}, {1,3,4,6}  Hence there are 4 such possibilities   Thus the required probability is  (4/(63)) yielding that p+q = 67

$${The}\:{total}\:{number}\:{of}\:{ways}\:{of}\:{dividing}\:\: \\ $$$${the}\:{seven}\:{numbers}\:{into}\:{two}\:{non}−{empty} \\ $$$${subsets}\:{is}\:\frac{\mathrm{2}^{\mathrm{7}} −\mathrm{2}}{\mathrm{2}}\:=\:\mathrm{63}.\:{Note}\:{that}\:{since} \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{3}+...+\mathrm{7}=\mathrm{28}\:,{the}\:{sum}\:{of}\:{the}\: \\ $$$${number}\:{in}\:{each}\:{of}\:{the}\:{two}\:{groups}\:{is}\:\mathrm{14}. \\ $$$${Note}\:{also}\:{that}\:{numbers}\:\mathrm{5},\mathrm{6},\mathrm{7}\:{cannot} \\ $$$${be}\:{in}\:{the}\:{same}\:{group}\:{since}\:\mathrm{5}+\mathrm{6}+\mathrm{7}=\mathrm{18}>\mathrm{14} \\ $$$${case}\left(\mathrm{1}\right)\:{only}\:\mathrm{6}\:\&\mathrm{7}\:{in}\:{the}\:{same}\:{group}\:{and}\: \\ $$$$\mathrm{5}\:{the}\:{other}\:{group}.\:\left\{\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5}\right\},\left\{\mathrm{1},\mathrm{6},\mathrm{7}\right\} \\ $$$${case}\left(\mathrm{2}\right)\:{only}\:\mathrm{5}\:\&\mathrm{6}\:{in}\:{the}\:{same}\:{group}\:{and} \\ $$$$\mathrm{7}\:{in}\:{the}\:{other}\:{group}\:.\:\left\{\mathrm{1},\mathrm{2},\mathrm{5},\mathrm{6}\right\},\:\left\{\mathrm{3},\mathrm{4},\mathrm{7}\right\} \\ $$$$\:\left\{\mathrm{3},\mathrm{5},\mathrm{6}\right\},\:\left\{\:\mathrm{1},\mathrm{2},\mathrm{4},\mathrm{7}\:\right\} \\ $$$${case}\left(\mathrm{3}\right)\:{only}\:\mathrm{5}\:\&\mathrm{7}\:{in}\:{the}\:{same}\:{group}\:{and} \\ $$$$\mathrm{6}\:{in}\:{the}\:{other}\:{group}\:.\:\left\{\mathrm{2},\mathrm{5},\mathrm{7}\right\},\:\left\{\mathrm{1},\mathrm{3},\mathrm{4},\mathrm{6}\right\} \\ $$$${Hence}\:{there}\:{are}\:\mathrm{4}\:{such}\:{possibilities}\: \\ $$$${Thus}\:{the}\:{required}\:{probability}\:{is} \\ $$$$\frac{\mathrm{4}}{\mathrm{63}}\:{yielding}\:{that}\:{p}+{q}\:=\:\mathrm{67} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com