Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116436 by mnjuly1970 last updated on 04/Oct/20

                   ... advanced  calculus...        evaluate ::                    I= ∫_( 0) ^(  ∞)   (((sin(x).sin(2x))/x)) dx =???            ... m.n.1970...

...advancedcalculus...evaluate::I=0(sin(x).sin(2x)x)dx=???...m.n.1970...

Commented by Bird last updated on 04/Oct/20

it seems that integral is divergent!

itseemsthatintegralisdivergent!

Commented by mathdave last updated on 04/Oct/20

is not divergent oooo

isnotdivergentoooo

Answered by mnjuly1970 last updated on 04/Oct/20

Answered by Bird last updated on 05/Oct/20

let take a try  we have  sinx.sin(2x)=cos((π/2)−x)cos((π/2)−2x)  =(1/2){cos(π−3x)+cos(x)}  =(1/2){cosx−cos(3x)} ⇒  I =(1/2)∫_0 ^∞  ((cosx−cos(3x))/x)dx  I =∫_0 ^∞  ((1−cos(3x))/(2x))dx−∫_0 ^∞ ((1−cosx)/(2x))dx  =(1/2)(u−v)  let f(a) =∫_0 ^∞  ((1−cosx)/x)e^(−ax) dx with a>0  f^′ (a) =−∫_0 ^∞   (1−cosx)e^(−ax) dx  =∫_0 ^∞  e^(−ax) cosxdx−∫_0 ^∞  e^(−ax) dx  ∫_0 ^∞  e^(−ax) dx=[−(1/a)e^(−ax) ]_0 ^∞   =(1/a)  ∫_0 ^∞  e^(−ax+ix) dx =∫_0 ^∞ e^((−a+i)x) dx  =[(1/(−a+i)) e^((−a+i)x) ]_0 ^∞ =−(1/(−a+i))=(1/(a−i))  =((a+i)/(a^2 +1)) ⇒∫_0 ^∞ e^(−ax)  cosxdx  =Re(...) =(a/(1+a^2 )) ⇒  f^′ (a) =(a/(1+a^2 ))−(1/a) ⇒  f(a) =(1/2)ln(1+a^2 )−lna +c  =ln(((√(1+a^2 ))/a)) +c  lim_(a→+∞) f(a) =0 =c ⇒  f(a) =ln(((√(1+a^2 ))/a))  ∫_0 ^∞  ((1−cosx)/x)dx =lim_(a→0)  f(a)  dont exist also ∫_0 ^∞  ((1−cos(3x))/x)dxdont  exist but we see  ∫_0 ^∞  ((1−cos(3x))/x)dx=_(3x=t)  3∫_0 ^∞  ((1−cost)/t)(dt/3)  =∫_0 ^∞   ((1−cosx)/x)dx I =0

lettakeatrywehavesinx.sin(2x)=cos(π2x)cos(π22x)=12{cos(π3x)+cos(x)}=12{cosxcos(3x)}I=120cosxcos(3x)xdxI=01cos(3x)2xdx01cosx2xdx=12(uv)letf(a)=01cosxxeaxdxwitha>0f(a)=0(1cosx)eaxdx=0eaxcosxdx0eaxdx0eaxdx=[1aeax]0=1a0eax+ixdx=0e(a+i)xdx=[1a+ie(a+i)x]0=1a+i=1ai=a+ia2+10eaxcosxdx=Re(...)=a1+a2f(a)=a1+a21af(a)=12ln(1+a2)lna+c=ln(1+a2a)+clima+f(a)=0=cf(a)=ln(1+a2a)01cosxxdx=lima0f(a)dontexistalso01cos(3x)xdxdontexistbutwesee01cos(3x)xdx=3x=t301costtdt3=01cosxxdxI=0

Commented by Bird last updated on 05/Oct/20

u=v ⇒I =0

u=vI=0

Commented by mnjuly1970 last updated on 05/Oct/20

solution:   method 1 : I =L [((sin(x).sin(2x)/x)]_(s=0)       = L [sin(x) sin(2x)]=(1/2) L [cos(x−2x) −cos(x+2x)]    =(1/2) L [cos(x)]− (1/2) L [cos(3x)]  =(1/2)∗ (s/(s^2 +1)) −(1/2)∗ (s/(s^2 +9))  I = {(1/2)∫_s ^( ∞) (u/(u^2 +1)) du − (1/2) ∫_s ^( ∞) (u/(u^2 +9))du}_(s=0)    ={(1/4) [ln (((u^2  +1)/(u^2 +9)))]_( u=s) ^( u=∞) = (1/4) ln((1/9))−(1/4) ln(((s^2 +1)/(s^2 +9)) )}_(s=0)     =[((−1)/2) ln(3) − (1/4)ln(((s^2 +1)/(s^2 +9)))]_( s=0)    =   thank you your effort  and  work  is  admirable ...

solution:method1:I=L[sin(x).sin(2xx]s=0=L[sin(x)sin(2x)]=12L[cos(x2x)cos(x+2x)]=12L[cos(x)]12L[cos(3x)]=12ss2+112ss2+9I={12suu2+1du12suu2+9du}s=0={14[ln(u2+1u2+9)]u=su==14ln(19)14ln(s2+1s2+9)}s=0=[12ln(3)14ln(s2+1s2+9)]s=0=thankyouyoureffortandworkisadmirable...

Answered by mathdave last updated on 05/Oct/20

solution  we know sinxsin2x=(1/2)(cosx−cos3x)  let I=∫_0 ^∞ ((sinxsin2x)/x)dx=(1/2)∫_0 ^∞ (((cosx−cos3x)/x))dx  from maz identity   ∫_0 ^∞ f(t)G(t)dt=∫^∞ f(s)g(s)ds  but note    L(f(t))=f(s)  and  L^(−1) (G(t))=g(s)  I=(1/2)∫_0 ^∞ L(cosx−cos3x)L^(−1) ((1/x))_(s=x) ds   but l^(−1) ((1/x))=1  I=(1/2)∫_0 ^∞ ((s/(s^2 +1))−(s/(s^2 +9)))ds(1/2)∫_0 ^∞ ((2s)/(2(s^2 +1)))ds−(1/2)∫_0 ^∞ ((2s)/(2(s^2 +9)))ds=(1/4)ln(((s^2 +1)/(s^2 +9)))_0 ^∞   I=(1/4)(0−ln((1/9)))=((ln(3))/2)  ∵∫_0 ^∞ ((sinxsin2x)/x)dx=((ln(3))/2)  by mathdave(05/10/2020)

solutionweknowsinxsin2x=12(cosxcos3x)letI=0sinxsin2xxdx=120(cosxcos3xx)dxfrommazidentity0f(t)G(t)dt=f(s)g(s)dsbutnoteL(f(t))=f(s)andL1(G(t))=g(s)I=120L(cosxcos3x)L1(1x)s=xdsbutl1(1x)=1I=120(ss2+1ss2+9)ds1202s2(s2+1)ds1202s2(s2+9)ds=14ln(s2+1s2+9)0I=14(0ln(19))=ln(3)20sinxsin2xxdx=ln(3)2bymathdave(05/10/2020)

Commented by mnjuly1970 last updated on 06/Oct/20

thank you  very nice as  always...

thankyouveryniceasalways...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com