Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 116437 by ZiYangLee last updated on 04/Oct/20

Prove that π<((22)/7)

$$\mathrm{Prove}\:\mathrm{that}\:\pi<\frac{\mathrm{22}}{\mathrm{7}} \\ $$

Answered by floor(10²Eta[1]) last updated on 04/Oct/20

let′s look at the integral and solve it:  I(x)=∫_0 ^1 ((x^4 (1−x)^4 )/(1+x^2 ))dx  =∫_0 ^1 ((x^8 −4x^7 +6x^6 −4x^5 +x^4 )/(1+x^2 ))dx  =∫_0 ^1 (x^6 −4x^5 +5x^4 −4x^2 +4−(4/(1+x^2 )))dx  =[(x^7 /7)−((2x^6 )/3)+x^5 −((4x^3 )/3)+4x−4tan^(−1) (x)]_0 ^1   =((22)/7)−π  and since I(x)>0 so  ((22)/7)−π>0⇒π<((22)/7)

$$\mathrm{let}'\mathrm{s}\:\mathrm{look}\:\mathrm{at}\:\mathrm{the}\:\mathrm{integral}\:\mathrm{and}\:\mathrm{solve}\:\mathrm{it}: \\ $$ $$\mathrm{I}\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{4}} \left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{4}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$ $$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}^{\mathrm{8}} −\mathrm{4x}^{\mathrm{7}} +\mathrm{6x}^{\mathrm{6}} −\mathrm{4x}^{\mathrm{5}} +\mathrm{x}^{\mathrm{4}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$ $$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{x}^{\mathrm{6}} −\mathrm{4x}^{\mathrm{5}} +\mathrm{5x}^{\mathrm{4}} −\mathrm{4x}^{\mathrm{2}} +\mathrm{4}−\frac{\mathrm{4}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)\mathrm{dx} \\ $$ $$=\left[\frac{\mathrm{x}^{\mathrm{7}} }{\mathrm{7}}−\frac{\mathrm{2x}^{\mathrm{6}} }{\mathrm{3}}+\mathrm{x}^{\mathrm{5}} −\frac{\mathrm{4x}^{\mathrm{3}} }{\mathrm{3}}+\mathrm{4x}−\mathrm{4tan}^{−\mathrm{1}} \left(\mathrm{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$ $$=\frac{\mathrm{22}}{\mathrm{7}}−\pi \\ $$ $$\mathrm{and}\:\mathrm{since}\:\mathrm{I}\left(\mathrm{x}\right)>\mathrm{0}\:\mathrm{so} \\ $$ $$\frac{\mathrm{22}}{\mathrm{7}}−\pi>\mathrm{0}\Rightarrow\pi<\frac{\mathrm{22}}{\mathrm{7}} \\ $$

Commented byZiYangLee last updated on 04/Oct/20

wow

$$\mathrm{wow} \\ $$

Answered by MJS_new last updated on 04/Oct/20

the area of a regular polygon with n sides  and an incircle of radius 1 is  A_n =n(√((1−cos ((2π)/n))/(1+cos ((2π)/n))))  lim_(n→∞)  A_n =π [ _(approximates the circle)^(obvious because the polygon) ]  if ((22)/7)<π ⇒ A_n =((22)/7) has no solution ∈R  ⇔ if A_n =((22)/7) ⇒ ((22)/7)>π  A_n =((22)/7) ⇒ n≈90.4298  ⇒ ((22)/7)>π

$$\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{regular}\:\mathrm{polygon}\:\mathrm{with}\:{n}\:\mathrm{sides} \\ $$ $$\mathrm{and}\:\mathrm{an}\:\mathrm{incircle}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{1}\:\mathrm{is} \\ $$ $${A}_{{n}} ={n}\sqrt{\frac{\mathrm{1}−\mathrm{cos}\:\frac{\mathrm{2}\pi}{{n}}}{\mathrm{1}+\mathrm{cos}\:\frac{\mathrm{2}\pi}{{n}}}} \\ $$ $$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{A}_{{n}} =\pi\:\left[\:_{\mathrm{approximates}\:\mathrm{the}\:\mathrm{circle}} ^{\mathrm{obvious}\:\mathrm{because}\:\mathrm{the}\:\mathrm{polygon}} \right] \\ $$ $$\mathrm{if}\:\frac{\mathrm{22}}{\mathrm{7}}<\pi\:\Rightarrow\:{A}_{{n}} =\frac{\mathrm{22}}{\mathrm{7}}\:\mathrm{has}\:\mathrm{no}\:\mathrm{solution}\:\in\mathbb{R} \\ $$ $$\Leftrightarrow\:\mathrm{if}\:{A}_{{n}} =\frac{\mathrm{22}}{\mathrm{7}}\:\Rightarrow\:\frac{\mathrm{22}}{\mathrm{7}}>\pi \\ $$ $${A}_{{n}} =\frac{\mathrm{22}}{\mathrm{7}}\:\Rightarrow\:{n}\approx\mathrm{90}.\mathrm{4298} \\ $$ $$\Rightarrow\:\frac{\mathrm{22}}{\mathrm{7}}>\pi \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com