Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 116451 by bemath last updated on 04/Oct/20

lim_(n→∞)  ((((n+1)(n+2)(n+3)...(n+n)))^(1/n) /n) =?

limn(n+1)(n+2)(n+3)...(n+n)nn=?

Commented by Olaf last updated on 04/Oct/20

Sorry I′m wrong !  I calculated another expression !  !??! I′m tired !

SorryImwrong!Icalculatedanotherexpression!!??!Imtired!

Answered by Olaf last updated on 04/Oct/20

u_n  =^n (√((Π_(k=1) ^n (n+k))/n))  v_n = lnu_n   v_n = (1/n)(lnΠ_(k=1) ^n (n+k)−lnn)  v_n = (1/n)(lnΠ_(k=1) ^n n(1+(k/n))−lnn)  v_n = (1/n)(lnn^n Π_(k=1) ^n (1+(k/n))−lnn)  v_n = (1/n)(nlnn+lnΠ_(k=1) ^n (1+(k/n))−lnn)  v_n = (1/n)(nlnn+Σ_(k=1) ^n ln(1+(k/n))−lnn)  ln(1+(k/n)) ∼_∞  (k/n)  v_n ∼_∞  (1/n)(nlnn+Σ_(k=1) ^n (k/n)−lnn)  v_n ∼_∞  (1/n)(nlnn+(1/n).((n(n+1))/2)−lnn)  v_n ∼_∞  lnn+((n+1)/(2n))−((lnn)/n) = +∞+(1/2)−0  lim_(n→∞) v_n  = +∞  lim_(n→∞) u_n  = lim_(n→∞) e^v_n   = +∞

un=nnk=1(n+k)nvn=lnunvn=1n(lnnk=1(n+k)lnn)vn=1n(lnnk=1n(1+kn)lnn)vn=1n(lnnnnk=1(1+kn)lnn)vn=1n(nlnn+lnnk=1(1+kn)lnn)vn=1n(nlnn+nk=1ln(1+kn)lnn)ln(1+kn)knvn1n(nlnn+nk=1knlnn)vn1n(nlnn+1n.n(n+1)2lnn)vnlnn+n+12nlnnn=++120limnvn=+limnun=limnevn=+

Commented by bemath last updated on 04/Oct/20

thank you sir

thankyousir

Answered by Dwaipayan Shikari last updated on 04/Oct/20

lim_(n→∞) (((1+(1/n))(1+(2/n))(1+(3/n))..))^(1/n) =y  lim_(n→∞) (1/n)Σ_(k=1) ^n log(1+(k/n))=logy  ∫_0 ^1 log(1+x)dx=logy  [xlog(1+x)]_0 ^1 −∫_0 ^1 (x/(1+x))=logy  log(2)−1+[log(1+x)]_0 ^1 =logy  2log(2)−1=logy  y=(4/e)

limn(1+1n)(1+2n)(1+3n)..n=ylimn1nnk=1log(1+kn)=logy01log(1+x)dx=logy[xlog(1+x)]0101x1+x=logylog(2)1+[log(1+x)]01=logy2log(2)1=logyy=4e

Answered by mnjuly1970 last updated on 04/Oct/20

 solution    l=lim_(n→∞) ((((n+1)(n+2)...(n+n)))^(1/n) /n)    l=lim_(n→∞ ) (((1+(1/n))(1+(2/n))...(1+(n/n))))^(1/n)   log(l) =lim_(n→∞) (1/n) Σ_(k=) ^n log(1+(k/n))                 = ∫_0 ^( 1) log(1+x)dx =∫_(1  ) ^( 2) log(t)dt  = [t log(t) −t ]_1 ^2 = 2log(2) −2+1    = log(4)−log(e) = log((4/e))     ∴      l := (4/e)   ✓✓                 ...m.n.1970...

solutionl=limn(n+1)(n+2)...(n+n)nnl=limn(1+1n)(1+2n)...(1+nn)nlog(l)=limn1nnk=log(1+kn)=01log(1+x)dx=12log(t)dt=[tlog(t)t]12=2log(2)2+1=log(4)log(e)=log(4e)l:=4e...m.n.1970...

Commented by bemath last updated on 04/Oct/20

yes...thank you

yes...thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com