All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 116459 by nguyenthanh last updated on 04/Oct/20
Answered by bemath last updated on 04/Oct/20
1−cos(π12)sinxcosx+(6−2)sin(x−7π12)=cos(π2+π12)1−cos(π12)sinxcosx+(6−2)sin(x−7π12)=−sin(π12)1+(6−2)cosx.sin(x−7π12)=cos(π12)sinx−cosx.sin(π12)1+6−22.(2cosxsin(π−(x−7π12))=sin(x−π12)1+6−22.(2sin(5π12−x).cosx)=sin(x−π12)1+6−22(sin(5π12)+sin(5π12−2x))=sin(x−π12)1+(6−22)(6+24)+(6−22)sin(5π12−2x)=sin(x−π12)32−2(2−64)sin(5π12−2x)=sin(x−π12)32+2sin(π12)sin(5π12−2x)=sin(x−π12)32+cos(π3−2x)−cos(π2−2x)=sin(x−π12)32+cos(π3−2x)=sin(x−π12)+sin2x
Answered by nguyenthanh last updated on 04/Oct/20
x=?
Terms of Service
Privacy Policy
Contact: info@tinkutara.com