Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 116459 by nguyenthanh last updated on 04/Oct/20

Answered by bemath last updated on 04/Oct/20

((1−cos ((π/(12)))sin x)/(cos x)) +((√6) −(√2) )sin (x−((7π)/(12))) = cos ((π/2)+(π/(12)))  ((1−cos ((π/(12)))sin x)/(cos x)) + ((√6)−(√2))sin (x−((7π)/(12)))=−sin ((π/(12)))  1+((√6)−(√2))cos x.sin (x−((7π)/(12)))=cos ((π/(12)))sin x−cos x.sin ((π/(12)))  1+(((√6)−(√2))/2).(2cos x sin (π−(x−((7π)/(12))))=sin (x−(π/(12)))  1+(((√6)−(√2))/2).(2sin (((5π)/(12))−x).cos x)=sin (x−(π/(12)))  1+(((√6)−(√2))/2) (sin (((5π)/(12)))+sin (((5π)/(12))−2x))=sin (x−(π/(12)))  1+((((√6)−(√2))/2))((((√6)+(√2))/4))+((((√6)−(√2))/2))sin (((5π)/(12))−2x)=sin (x−(π/(12)))  (3/2) −2((((√2)−(√6))/4))sin (((5π)/(12))−2x)=sin (x−(π/(12)))  (3/2)+2sin ((π/(12)))sin (((5π)/(12))−2x)=sin (x−(π/(12)))  (3/2)+cos ((π/3)−2x)−cos ((π/2)−2x)=sin (x−(π/(12)))  (3/2)+cos ((π/3)−2x)=sin (x−(π/(12)))+sin 2x

1cos(π12)sinxcosx+(62)sin(x7π12)=cos(π2+π12)1cos(π12)sinxcosx+(62)sin(x7π12)=sin(π12)1+(62)cosx.sin(x7π12)=cos(π12)sinxcosx.sin(π12)1+622.(2cosxsin(π(x7π12))=sin(xπ12)1+622.(2sin(5π12x).cosx)=sin(xπ12)1+622(sin(5π12)+sin(5π122x))=sin(xπ12)1+(622)(6+24)+(622)sin(5π122x)=sin(xπ12)322(264)sin(5π122x)=sin(xπ12)32+2sin(π12)sin(5π122x)=sin(xπ12)32+cos(π32x)cos(π22x)=sin(xπ12)32+cos(π32x)=sin(xπ12)+sin2x

Answered by nguyenthanh last updated on 04/Oct/20

x=?

x=?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com