Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116500 by bobhans last updated on 04/Oct/20

∫_0 ^∞  ((sin^3 (x))/x) dx =?

0sin3(x)xdx=?

Answered by Olaf last updated on 04/Oct/20

I = ∫_0 ^∞ ((sin^3 x)/x)dx  I = ∫_0 ^∞ −(1/4).((sin3x)/x)dx+∫_0 ^∞ (3/4).((sinx)/x)dx  u = 3x  I = −(1/4)∫_0 ^∞ ((sinu)/u)du+(3/4)∫_0 ^∞ ((sinx)/x)dx  I = (1/2)∫_0 ^∞ ((sinu)/u)dx =(1/2)× (π/2) = (π/4)  (Dirichlet integral)

I=0sin3xxdxI=014.sin3xxdx+034.sinxxdxu=3xI=140sinuudu+340sinxxdxI=120sinuudx=12×π2=π4(Dirichletintegral)

Answered by Bird last updated on 04/Oct/20

we hsve sin^3 x =sin^2 x sinx  =((1−cos(2x))/2)sinx  =(1/2)sinx−(1/2)cos(2x)sinx  but cos(2x)sinx =cos(2x)cos((π/2)−x)  =(1/2){cos(x+(π/2))+cos(3x−(π/2))}  =−(1/2)sinx+(1/2)sin(3x) ⇒  sin^3 x =(1/2)sinx+(1/4)sinx−(1/4)sin(3x)  =(3/4)sinx+(1/4)sin(3x) ⇒  ∫_0 ^∞ ((sin^3 x)/x)dx =(3/4)∫_0 ^∞ ((sinx)/x)dx  +(1/4)∫_0 ^∞  ((sin(3x))/x)dx(→3x=t)  =(3/4).(π/2) +(1/4).3∫_0 ^∞  ((sint)/t)(dt/3)  =((3π)/8)+(1/4).(π/2) =((4π)/8) =(π/2)

wehsvesin3x=sin2xsinx=1cos(2x)2sinx=12sinx12cos(2x)sinxbutcos(2x)sinx=cos(2x)cos(π2x)=12{cos(x+π2)+cos(3xπ2)}=12sinx+12sin(3x)sin3x=12sinx+14sinx14sin(3x)=34sinx+14sin(3x)0sin3xxdx=340sinxxdx+140sin(3x)xdx(3x=t)=34.π2+14.30sinttdt3=3π8+14.π2=4π8=π2

Commented by Bird last updated on 04/Oct/20

typo error  sin^3 x =(3/4)sinx−(1/4)sin(3x)  ⇒∫_0 ^∞ ((sin^3 x)/x)dx =(3/4)∫_0 ^∞  ((sinx)/x)dx  −(1/4)∫_0 ^∞ ((sin(3x))/x)dx(→3x=t)  =(3/4)(π/2)−(1/4).3∫_0 ^∞  ((sin(t))/t)(dt/3)  =((3π)/8)−(1/4)(π/2) =((3π)/8)−(π/8) =(π/4)

typoerrorsin3x=34sinx14sin(3x)0sin3xxdx=340sinxxdx140sin(3x)xdx(3x=t)=34π214.30sin(t)tdt3=3π814π2=3π8π8=π4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com