All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 116500 by bobhans last updated on 04/Oct/20
∫∞0sin3(x)xdx=?
Answered by Olaf last updated on 04/Oct/20
I=∫0∞sin3xxdxI=∫0∞−14.sin3xxdx+∫0∞34.sinxxdxu=3xI=−14∫0∞sinuudu+34∫0∞sinxxdxI=12∫0∞sinuudx=12×π2=π4(Dirichletintegral)
Answered by Bird last updated on 04/Oct/20
wehsvesin3x=sin2xsinx=1−cos(2x)2sinx=12sinx−12cos(2x)sinxbutcos(2x)sinx=cos(2x)cos(π2−x)=12{cos(x+π2)+cos(3x−π2)}=−12sinx+12sin(3x)⇒sin3x=12sinx+14sinx−14sin(3x)=34sinx+14sin(3x)⇒∫0∞sin3xxdx=34∫0∞sinxxdx+14∫0∞sin(3x)xdx(→3x=t)=34.π2+14.3∫0∞sinttdt3=3π8+14.π2=4π8=π2
Commented by Bird last updated on 04/Oct/20
typoerrorsin3x=34sinx−14sin(3x)⇒∫0∞sin3xxdx=34∫0∞sinxxdx−14∫0∞sin(3x)xdx(→3x=t)=34π2−14.3∫0∞sin(t)tdt3=3π8−14π2=3π8−π8=π4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com