Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116533 by Bird last updated on 04/Oct/20

find u_n =∫_0 ^∞  ((sin^n x)/x)dx   (n≥1)

findun=0sinnxxdx(n1)

Answered by Olaf last updated on 04/Oct/20

1st case : n is odd  sin^n x = (1/2^(n−1) )(−1)^((n−1)/2) Σ_(k=0) ^((n−1)/2) (−1)^k C_n ^k sin[(n−2k)x]  u_n  = (1/2^(n−1) )(−1)^((n−1)/2) Σ_(k=0) ^((n−1)/2) (−1)^k C_n ^k ∫_0 ^∞ ((sin[(n−2k)x])/x)dx  t = (n−2k)x  u_n  = (1/2^(n−1) )(−1)^((n−1)/2) Σ_(k=0) ^((n−1)/2) (−1)^k C_n ^k ∫_0 ^∞ ((sint)/t)dt  With ∫_0 ^∞ ((sint)/t)dt = (π/2) (Dirichlet)  u_n  = (π/2^n )(−1)^((n−1)/2) Σ_(k=0) ^((n−1)/2) (−1)^k C_n ^k     2nd case : n is even  sin^n x = (1/2^(n−1) )(−1)^(n/2) (Σ_(k=0) ^((n−2)/2) (−1)^k C_n ^k cos[(n−2k)x]+(1/2)(−1)^(n/2) C_n ^(n/2) )  u_n  = (1/2^(n−1) )(−1)^(n/2) (Σ_(k=0) ^((n−2)/2) (−1)^k C_n ^k ∫_0 ^∞ ((cos[(n−2k)x])/x)dx+(1/2)(−1)^(n/2) C_n ^(n/2) ∫_0 ^∞ (dx/x))  u_n  = (1/2^(n−1) )(−1)^(n/2) (Σ_(k=0) ^((n−2)/2) (−1)^k C_n ^k ∫_0 ^∞ ((cost)/t)dt+(1/2)(−1)^(n/2) C_n ^(n/2) ∫_0 ^∞ (dt/t))  ????

1stcase:nisoddsinnx=12n1(1)n12n12k=0(1)kCnksin[(n2k)x]un=12n1(1)n12n12k=0(1)kCnk0sin[(n2k)x]xdxt=(n2k)xun=12n1(1)n12n12k=0(1)kCnk0sinttdtWith0sinttdt=π2(Dirichlet)un=π2n(1)n12n12k=0(1)kCnk2ndcase:nisevensinnx=12n1(1)n2(n22k=0(1)kCnkcos[(n2k)x]+12(1)n2Cnn2)un=12n1(1)n2(n22k=0(1)kCnk0cos[(n2k)x]xdx+12(1)n2Cnn20dxx)un=12n1(1)n2(n22k=0(1)kCnk0costtdt+12(1)n2Cnn20dtt)????

Commented by mathmax by abdo last updated on 04/Oct/20

thank you sir

thankyousir

Commented by maths mind last updated on 04/Oct/20

∫_0 ^∞ ((sin^(2n) (x))/x)dx  dont Converge  Σ_(k=0) ^∞ ∫_(2kπ) ^(2(k+1)π) ((sin^(2n) (x))/x)dx≥Σ_(k=0) ^∞ ∫_(2kπ+(π/4)) ^(2kπ+(π/2)) ((sin^(2n) (x))/x)dx  ≥Σ_(k≥0) (((((√2)/2))^(2n) )/(2(k+1)π))→∞

0sin2n(x)xdxdontConvergek=02kπ2(k+1)πsin2n(x)xdxk=02kπ+π42kπ+π2sin2n(x)xdxk0(22)2n2(k+1)π

Answered by mathmax by abdo last updated on 04/Oct/20

we have  sinx =((e^(ix) −e^(−ix) )/(2i)) ⇒sin^n x =(1/((2i)^n ))(e^(ix) −e^(−ix) )^n   =(1/((2i)^n ))Σ_(k=0) ^n  C_(n ) ^k    (e^(ix) )^k (−e^(−ix) )^(n−k)   =(1/((2i)^n )) Σ_(k=0) ^n   C_n ^k  e^(ikx) (−1)^(n−k)  e^(−i(n−k)x)   =(1/((2i)^n )) Σ_(k.0) ^n (−1)^k  C_n ^k  e^(ikx−(n−k)ix)   =(1/((2i)^n )) Σ_(k=0) ^n (−1)^k  C_n ^k  e^(i(2k−n)x)   =(1/((2i)^n ))Σ_(k=0) ^n (−1)^k  C_n ^k  {cos(2k−n)x +isin(2k−n)x} ⇒  u_n =(1/((2i)^n ))Σ_(k=0) ^n (−1)^k  C_n ^k  ∫_0 ^∞  ((cos(2k−n)x)/x)dx +(i/((2i)^n ))Σ_(k=0) ^n (−1)^k  C_n ^k ∫_0 ^∞  ((sin(2k−n)x)/x)dx  ∫_0 ^∞   ((sin(2k−n)x)/x)dx =_(2k−n)x=t)   (2k−n)  ∫_0 ^∞ ((sint)/t)(dt/(2k−n))  =(π/2) ⇒  u_n =(1/((2i)^n )) Σ_(k=0) ^n (−1)^k  C_n ^k  ∫_0 ^∞  ((cos(2k−n)x)/x)dx+(π/2)(i/((2i)^n ))Σ_(k=0) ^n (−1)^k  C_n ^k   ∫_0 ^∞ ((cos(2k−n)x)/x)dx  =_((2k−n)x=t) (2k−n)  ∫_0 ^∞   ((cost)/t)(dt/(2k−n))  =∫_0 ^∞  ((cost)/t) dt =Re(∫_0 ^∞  (e^(it) /t)dt) but  ∫_0 ^∞  (e^(it) /t) dt =∫_0 ^∞  (e^(−(−it)) /t)dt =_(−it =u)   ∫_0 ^(i∞)   (e^(−u) /(u/(−i)))idu =∫_0 ^(i∞)  u^(−1)  e^(−u)  du  ....be continued....

wehavesinx=eixeix2isinnx=1(2i)n(eixeix)n=1(2i)nk=0nCnk(eix)k(eix)nk=1(2i)nk=0nCnkeikx(1)nkei(nk)x=1(2i)nk.0n(1)kCnkeikx(nk)ix=1(2i)nk=0n(1)kCnkei(2kn)x=1(2i)nk=0n(1)kCnk{cos(2kn)x+isin(2kn)x}un=1(2i)nk=0n(1)kCnk0cos(2kn)xxdx+i(2i)nk=0n(1)kCnk0sin(2kn)xxdx0sin(2kn)xxdx=2kn)x=t(2kn)0sinttdt2kn=π2un=1(2i)nk=0n(1)kCnk0cos(2kn)xxdx+π2i(2i)nk=0n(1)kCnk0cos(2kn)xxdx=(2kn)x=t(2kn)0costtdt2kn=0costtdt=Re(0eittdt)but0eittdt=0e(it)tdt=it=u0ieuuiidu=0iu1eudu....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com