Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 116555 by Bird last updated on 04/Oct/20

find  Σ_(n=1) ^∞  (((−1)^n )/(n^2 (n+1)^3 (n+2)^4 ))

findn=1(1)nn2(n+1)3(n+2)4

Answered by Olaf last updated on 05/Oct/20

R(n) = (1/(n^2 (n+1)^3 (n+2)^4 ))  R(n) = −(5/(16)).(1/n)+(1/(16)).(1/n^2 )+(5/(n+1))−(2/((n+1)^2 ))  +(1/((n+1)^3 ))−((75)/(16)).(1/(n+2))−((39)/(16)).(1/((n+2)^2 ))  −(1/((n+2)^3 ))−(1/4).(1/((n+2)^4 ))    Σ_(n=1) ^∞ (((−1)^n )/n) = −ln2  Σ_(n=1) ^∞ (((−1)^n )/n^2 ) = −(π^2 /(12))  Σ_(n=1) ^∞ (((−1)^n )/n^3 ) = −(3/(12))ξ(3)  Σ_(n=1) ^∞ (((−1)^n )/n^4 ) = −((7π^4 )/(720))    S = −(5/(16))(−ln2)+(1/(16))(−(π^2 /(12)))+5(−ln2+1)  −2(−(π^2 /(12))+1)+(−(3/(12))ξ(3)+1)−((75)/(16))(−ln2+1−(1/2))  −((39)/(16))(−(π^2 /(12))+1−(1/4))−(−(3/(12))ξ(3)+1−(1/8))  −(1/4)(−((7π^4 )/(720))+1−(1/(16)))  S = ln2((5/(16))−5+((75)/(16)))  −(π^2 /(12))((1/(16))−2−((39)/(16)))  −(3/(12))ξ(3)(1−1)+((7π^4 )/(2880))  +5−2+1−((75)/(32))−((117)/(64))−(7/8)−((15)/(64))  S = ((35π^2 )/(96))+((7π^4 )/(2880))−((41)/(32))    Please mister verify the calculous.

R(n)=1n2(n+1)3(n+2)4R(n)=516.1n+116.1n2+5n+12(n+1)2+1(n+1)37516.1n+23916.1(n+2)21(n+2)314.1(n+2)4n=1(1)nn=ln2n=1(1)nn2=π212n=1(1)nn3=312ξ(3)n=1(1)nn4=7π4720S=516(ln2)+116(π212)+5(ln2+1)2(π212+1)+(312ξ(3)+1)7516(ln2+112)3916(π212+114)(312ξ(3)+118)14(7π4720+1116)S=ln2(5165+7516)π212(11623916)312ξ(3)(11)+7π42880+52+1753211764781564S=35π296+7π428804132Pleasemisterverifythecalculous.

Commented by mathmax by abdo last updated on 05/Oct/20

thank you sir.

thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com