All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 116556 by Bird last updated on 04/Oct/20
letg(x)=ln(cos(ax))developpgatfourierserie(arealgiven)
Answered by maths mind last updated on 05/Oct/20
letf(t)=ln(cos(t))t∈]−π2,π2[,cos(t)=eit+e−it2f(t)=ln(eit+e−it2)=ln(1+e2it)−ln(2eit)=∑k⩾0(−1)ke2i(k+1)t(k+1)−ln(2)−itf(t)=f(−t)⇒f(t)=f(t)+f(−t)2⇒f(t)=12[∑k⩾0(−1)k(k+1)e2i(k+1)t−ln(2)−it+∑k⩾0(−1)k(k+1)e−2i(k+1)t−ln(2)+it]=−ln(2)+∑k⩾0(−1)k(k+1){e2i(k+1)t+e−2i(k+1)t2}=−ln(2)+∑k⩾0(−1)k(k+1)cos(2(k+1)t)g(x)=f(ax),∀x∈]−∣π2a∣,π∣2a∣[,∀a≠0g(x)=−ln(2)+∑k⩾0(−1)kk+1cos(2a(k+1)x)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com