Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116557 by Bird last updated on 04/Oct/20

calculate ∫_0 ^∞  ((ln(1+x(1+t^2 ))/(1+t^2 )) dt  with x>0  2) find the value of ∫_0 ^∞  ((ln(2+t^2 ))/(1+t^2 ))dt  and ∫_0 ^∞  ((ln(3+2t^2 ))/(1+t^2 ))dt

calculate0ln(1+x(1+t2)1+t2dt withx>0 2)findthevalueof0ln(2+t2)1+t2dt and0ln(3+2t2)1+t2dt

Answered by mindispower last updated on 05/Oct/20

f(x)=∫_0 ^∞ ((ln(1+x(1+t^2 )))/(1+t^2 ))dt  f′(x)=∫_0 ^∞ (dt/(1+x(1+t^2 )))  =∫_0 ^∞ (dt/((1+x)(1+((t/( (√(1+x)))))^2 )))  =(1/( (√(1+x))))[tan^(−1) ((t/( (√(1+x)))))]_0 ^∞   =(π/(2(√(1+x))))   f(0)=0  f(x)=∫_0 ^x (π/(2(√(1+x))))=π(√(1+x))  ∫_0 ^∞ ((ln(2+t^2 ))/(1+t^2 ))dt=f(1)=π(√2)  ∫_0 ^∞ ((ln(3+2t^2 ))/(1+t^2 ))dt=f(2)=π(√3)

f(x)=0ln(1+x(1+t2))1+t2dt f(x)=0dt1+x(1+t2) =0dt(1+x)(1+(t1+x)2) =11+x[tan1(t1+x)]0 =π21+x f(0)=0 f(x)=0xπ21+x=π1+x 0ln(2+t2)1+t2dt=f(1)=π2 0ln(3+2t2)1+t2dt=f(2)=π3

Commented bymathmax by abdo last updated on 05/Oct/20

thanks sir

thankssir

Commented bymathmax by abdo last updated on 05/Oct/20

(1+x)(1+((t/(√(1+x))))^2 ) =(1+x){1+(t^2 /(1+x))} =1+x +t^2  ≠1+x(1+t^2 ) !

(1+x)(1+(t1+x)2)=(1+x){1+t21+x}=1+x+t21+x(1+t2)!

Answered by mathmax by abdo last updated on 05/Oct/20

1) let f(x)=∫_0 ^∞  ((ln(1+x(1+t^2 )))/(1+t^2 ))dt  we have f^′ (x)=∫_0 ^∞   (dt/(1+x(1+t^2 )))  =∫_0 ^∞   (dt/(xt^2  +x+1)) =(1/x) ∫_0 ^∞   (dt/(t^2  +((x+1)/x))) =_(t=(√((x+1)/x))u)   (1/x).(x/(x+1))∫_0 ^∞   (1/(u^2  +1))((√(x+1))/(√x))du  =(1/((√x)(√(x+1)))) ⇒ f(x) =∫ (dx/((√x)(√(x+1)))) +c  =_((√x)=z)    ∫ ((2zdz)/(z(√(z^2 +1)))) +c =2 ∫ (dz/(√(z^2  +1))) +c  =2ln(z+(√(1+z^2 ))) +c =2ln((√x)+(√(1+x))) +c  f(0)=0 =2ln(1)+c =c ⇒f(x) =2ln((√x)+(√(1+x)))  2)∫_0 ^∞  ((ln(2+t^2 ))/(1+t^2 ))dt =f(1) =2ln(1+(√2))  ∫_0 ^∞   ((ln(3+2t^2 ))/(1+t^2 ))dt =f(2) =2ln((√2)+(√3))

1)letf(x)=0ln(1+x(1+t2))1+t2dtwehavef(x)=0dt1+x(1+t2) =0dtxt2+x+1=1x0dtt2+x+1x=t=x+1xu1x.xx+101u2+1x+1xdu =1xx+1f(x)=dxxx+1+c =x=z2zdzzz2+1+c=2dzz2+1+c =2ln(z+1+z2)+c=2ln(x+1+x)+c f(0)=0=2ln(1)+c=cf(x)=2ln(x+1+x) 2)0ln(2+t2)1+t2dt=f(1)=2ln(1+2) 0ln(3+2t2)1+t2dt=f(2)=2ln(2+3)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com