Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 116603 by ZiYangLee last updated on 05/Oct/20

When f(x) divided by (x−1)(x+2),  the remainder is (x+3)  When f(x) divided by (x^2 +2x+5),  the remainder is (2x+1)  Find the remainder if f(x) is divided  by(x−1)(x^2 +2x+5)

Whenf(x)dividedby(x1)(x+2),theremainderis(x+3)Whenf(x)dividedby(x2+2x+5),theremainderis(2x+1)Findtheremainderiff(x)isdividedby(x1)(x2+2x+5)

Answered by 1549442205PVT last updated on 06/Oct/20

From the hypothesis we have:  f(x)=p(x)(x−1)(x+2)+x+3(1)  f(x)=q(x)(x^2 +2x+5)+2x+1  ⇔f(x)=q(x)([x−(−1+2i)][x−(−1−2i)]  +2x+1(2)  We have x^2 +2x+5=0⇔x=−1±2i  (2)⇒f(−1+2i)=2(−1+2i)+1=−1+4i  f(−1−2i)=2(−1−2i)+1=−1−4i  We need find r(x)=ax^2 +bx+c so that  f(x)=h(x)(x−1)(x^2 +2x+5)+r(x)(3)  From(1)(2)we get   { ((f(1)=4,f(−2)=1)),((f(−1+2i)=−1+4i,f(−1−2i)=−1−4i)) :}  Put into (3) we get  i)4=f(1)=a+b+c  ii)−1+4i=a(−1+2i)^2 +b(−1+2i)+c  ⇔−1+4i=−5a−4ai−b+2bi+c  ⇔(−5a−b+c+1)+(2b−4a−4)i=0  ⇔ { ((−5a−b+c+1=0)),((2b−4a−4=0)) :}  iii)−1−4i=a(−1−2i)^2 +b(−1−2i)+c  ⇔−1−4i=−5a+4ai−b−2bi+c  ⇔−5a−b+c+1+(4a−2b+4)i=0  ⇔ { ((−5a−b+c+1=0)),((4a−2b+4=0)) :}  We obtain the system of three eqns   { ((a+b+c=4(4))),((−5a−b+c+1=0(5))),((4a−2b+4=0(6))) :}  Substract (4) from (5)we get  6a+2b−5=0 ,adding this equation to  (6) we get 10a−1=0⇒a=1/10  ⇒b=11/10,c=28/10.Therefore we get  r(x)=0.1x^2 +1.1x+2.8

Fromthehypothesiswehave:f(x)=p(x)(x1)(x+2)+x+3(1)f(x)=q(x)(x2+2x+5)+2x+1f(x)=q(x)([x(1+2i)][x(12i)]+2x+1(2)Wehavex2+2x+5=0x=1±2i(2)f(1+2i)=2(1+2i)+1=1+4if(12i)=2(12i)+1=14iWeneedfindr(x)=ax2+bx+csothatf(x)=h(x)(x1)(x2+2x+5)+r(x)(3)From(1)(2)weget{f(1)=4,f(2)=1f(1+2i)=1+4i,f(12i)=14iPutinto(3)wegeti)4=f(1)=a+b+cii)1+4i=a(1+2i)2+b(1+2i)+c1+4i=5a4aib+2bi+c(5ab+c+1)+(2b4a4)i=0{5ab+c+1=02b4a4=0iii)14i=a(12i)2+b(12i)+c14i=5a+4aib2bi+c5ab+c+1+(4a2b+4)i=0{5ab+c+1=04a2b+4=0Weobtainthesystemofthreeeqns{a+b+c=4(4)5ab+c+1=0(5)4a2b+4=0(6)Substract(4)from(5)weget6a+2b5=0,addingthisequationto(6)weget10a1=0a=1/10b=11/10,c=28/10.Thereforewegetr(x)=0.1x2+1.1x+2.8

Terms of Service

Privacy Policy

Contact: info@tinkutara.com