Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 116610 by moh175 last updated on 05/Oct/20

       solve :       ((1/( (√2))))^(2h)  + (((√3)/2))^h  = 1

$$ \\ $$$$\:\:\:\:\:{solve}\:: \\ $$$$\:\:\:\:\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}{h}} \:+\:\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{{h}} \:=\:\mathrm{1} \\ $$

Commented by Dwaipayan Shikari last updated on 05/Oct/20

h=2  (By observation)

$$\mathrm{h}=\mathrm{2}\:\:\left(\mathrm{By}\:\mathrm{observation}\right) \\ $$

Answered by 1549442205PVT last updated on 05/Oct/20

We have  ((1/( (√2))))^(2h)  + (((√3)/2))^h  = 1⇔((1/2))^h +(((√3)/2))^h =1(1)  It is easy to see that h=2 satisfy the  equation since ((1/2))^2 +(((√3)/2))^2 =(1/4)+(3/4)=1  We note that 0<(1/2)<((√3)/2)<1.Hence  ((1/2))^x and (((√3)/2))^x both are decreasing functions  on (0;+∞).Therefore  i)If h>2 then ((1/2))^h +(((√3)/2))^h <((1/2))^2 +(((√3)/2))^2 =1  ii)If h<2 then   then ((1/2))^h +(((√3)/2))^h >((1/2))^2 +(((√3)/2))^2 =1  That shows h=2 is unique root of  given equation

$$\mathrm{We}\:\mathrm{have} \\ $$$$\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}{h}} \:+\:\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{{h}} \:=\:\mathrm{1}\Leftrightarrow\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{h}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{h}} =\mathrm{1}\left(\mathrm{1}\right) \\ $$$$\mathrm{It}\:\mathrm{is}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{see}\:\mathrm{that}\:\mathrm{h}=\mathrm{2}\:\mathrm{satisfy}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{since}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{4}}=\mathrm{1} \\ $$$$\mathrm{We}\:\mathrm{note}\:\mathrm{that}\:\mathrm{0}<\frac{\mathrm{1}}{\mathrm{2}}<\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}<\mathrm{1}.\mathrm{Hence} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{x}} \mathrm{and}\:\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{x}} \mathrm{both}\:\mathrm{are}\:\mathrm{decreasing}\:\mathrm{functions} \\ $$$$\mathrm{on}\:\left(\mathrm{0};+\infty\right).\mathrm{Therefore} \\ $$$$\left.\mathrm{i}\right)\mathrm{If}\:\mathrm{h}>\mathrm{2}\:\mathrm{then}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{h}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{h}} <\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\left.\mathrm{ii}\right)\mathrm{If}\:\mathrm{h}<\mathrm{2}\:\mathrm{then} \\ $$$$\:\mathrm{then}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{h}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{h}} >\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{That}\:\mathrm{shows}\:\mathrm{h}=\mathrm{2}\:\mathrm{is}\:\mathrm{unique}\:\mathrm{root}\:\mathrm{of} \\ $$$$\mathrm{given}\:\mathrm{equation} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com