Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 116614 by bemath last updated on 05/Oct/20

 (x^2  cos^2 ((x/y))−y)dx + x dy = 0  where y(1)= (π/4)

$$\:\left(\mathrm{x}^{\mathrm{2}} \:\mathrm{cos}\:^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{y}}\right)−\mathrm{y}\right)\mathrm{dx}\:+\:\mathrm{x}\:\mathrm{dy}\:=\:\mathrm{0} \\ $$$$\mathrm{where}\:\mathrm{y}\left(\mathrm{1}\right)=\:\frac{\pi}{\mathrm{4}} \\ $$

Commented by TANMAY PANACEA last updated on 05/Oct/20

i think it should be cos^2 ((y/x))

$${i}\:{think}\:{it}\:{should}\:{be}\:{cos}^{\mathrm{2}} \left(\frac{{y}}{{x}}\right) \\ $$

Commented by bobhans last updated on 05/Oct/20

let (x/y) = v ⇒ y = xv^(−1)   (dy/dx) = v^(−1)  −xv^(−2)  (dv/dx)  ⇒(dy/dx) = ((y−x^2  cos^2 ((x/y)))/x)  ⇒(1/v)−(x/v^2 ) (dv/dx) = (((x/v)−x^2  cos^2 (v))/x)  ⇒(1/v)−((x dv)/(v^2  dx)) = (1/v) −x cos^2 (v)  ⇒((x dv)/(v^2  dx)) = x cos^2 (v)  ⇒(dv/(cos^2  (v))) = dx ; ∫ sec^2 (v) dv = ∫ dx  ⇒ tan (v) = x+c  ⇒ tan ((x/y)) = x+c , from given condition  y(1)=(π/4) ⇒tan ((4/π)) = 1+ c   ⇒0.022−1 = c , c =−0.978  therefore solution is (x/y) = tan^(−1) (x−0.978)  or y = (x/(tan^(−1) (x−0.978)))

$$\mathrm{let}\:\frac{\mathrm{x}}{\mathrm{y}}\:=\:\mathrm{v}\:\Rightarrow\:\mathrm{y}\:=\:\mathrm{xv}^{−\mathrm{1}} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{v}^{−\mathrm{1}} \:−\mathrm{xv}^{−\mathrm{2}} \:\frac{\mathrm{dv}}{\mathrm{dx}} \\ $$$$\Rightarrow\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{y}−\mathrm{x}^{\mathrm{2}} \:\mathrm{cos}\:^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{y}}\right)}{\mathrm{x}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{v}}−\frac{\mathrm{x}}{\mathrm{v}^{\mathrm{2}} }\:\frac{\mathrm{dv}}{\mathrm{dx}}\:=\:\frac{\frac{\mathrm{x}}{\mathrm{v}}−\mathrm{x}^{\mathrm{2}} \:\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{v}\right)}{\mathrm{x}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{v}}−\frac{\mathrm{x}\:\mathrm{dv}}{\mathrm{v}^{\mathrm{2}} \:\mathrm{dx}}\:=\:\frac{\mathrm{1}}{\mathrm{v}}\:−\mathrm{x}\:\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{v}\right) \\ $$$$\Rightarrow\frac{\mathrm{x}\:\mathrm{dv}}{\mathrm{v}^{\mathrm{2}} \:\mathrm{dx}}\:=\:\mathrm{x}\:\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{v}\right) \\ $$$$\Rightarrow\frac{\mathrm{dv}}{\mathrm{cos}\:^{\mathrm{2}} \:\left(\mathrm{v}\right)}\:=\:\mathrm{dx}\:;\:\int\:\mathrm{sec}\:^{\mathrm{2}} \left(\mathrm{v}\right)\:\mathrm{dv}\:=\:\int\:\mathrm{dx} \\ $$$$\Rightarrow\:\mathrm{tan}\:\left(\mathrm{v}\right)\:=\:\mathrm{x}+\mathrm{c} \\ $$$$\Rightarrow\:\mathrm{tan}\:\left(\frac{\mathrm{x}}{\mathrm{y}}\right)\:=\:\mathrm{x}+\mathrm{c}\:,\:\mathrm{from}\:\mathrm{given}\:\mathrm{condition} \\ $$$$\mathrm{y}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{4}}\:\Rightarrow\mathrm{tan}\:\left(\frac{\mathrm{4}}{\pi}\right)\:=\:\mathrm{1}+\:\mathrm{c}\: \\ $$$$\Rightarrow\mathrm{0}.\mathrm{022}−\mathrm{1}\:=\:\mathrm{c}\:,\:\mathrm{c}\:=−\mathrm{0}.\mathrm{978} \\ $$$$\mathrm{therefore}\:\mathrm{solution}\:\mathrm{is}\:\frac{\mathrm{x}}{\mathrm{y}}\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}−\mathrm{0}.\mathrm{978}\right) \\ $$$$\mathrm{or}\:\mathrm{y}\:=\:\frac{\mathrm{x}}{\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}−\mathrm{0}.\mathrm{978}\right)} \\ $$

Commented by bemath last updated on 05/Oct/20

sir Tanmay. in my book the question  correct sir

$$\mathrm{sir}\:\mathrm{Tanmay}.\:\mathrm{in}\:\mathrm{my}\:\mathrm{book}\:\mathrm{the}\:\mathrm{question} \\ $$$$\mathrm{correct}\:\mathrm{sir} \\ $$

Answered by TANMAY PANACEA last updated on 05/Oct/20

recheck the problem pls

$${recheck}\:{the}\:{problem}\:{pls} \\ $$

Answered by TANMAY PANACEA last updated on 05/Oct/20

assume cos^2 ((y/x)) given  xdy−ydx+x^2 cos^2 ((y/x))dx=0  ((xdy−ydx)/x^2 )×sec^2 ((y/x))+dx=dc  sec^2 ((y/x))d((y/x))+dx=dc  intregating  tan((y/x))+x=c

$${assume}\:\boldsymbol{{cos}}^{\mathrm{2}} \left(\frac{\boldsymbol{{y}}}{\boldsymbol{{x}}}\right)\:\boldsymbol{{given}} \\ $$$$\boldsymbol{{xdy}}−\boldsymbol{{ydx}}+\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{cos}}^{\mathrm{2}} \left(\frac{\boldsymbol{{y}}}{\boldsymbol{{x}}}\right)\boldsymbol{{dx}}=\mathrm{0} \\ $$$$\frac{\boldsymbol{{xdy}}−\boldsymbol{{ydx}}}{\boldsymbol{{x}}^{\mathrm{2}} }×\boldsymbol{{sec}}^{\mathrm{2}} \left(\frac{\boldsymbol{{y}}}{\boldsymbol{{x}}}\right)+\boldsymbol{{dx}}=\boldsymbol{{dc}} \\ $$$$\boldsymbol{{sec}}^{\mathrm{2}} \left(\frac{\boldsymbol{{y}}}{\boldsymbol{{x}}}\right)\boldsymbol{{d}}\left(\frac{\boldsymbol{{y}}}{\boldsymbol{{x}}}\right)+\boldsymbol{{dx}}=\boldsymbol{{dc}} \\ $$$$\boldsymbol{{intregating}} \\ $$$$\boldsymbol{{tan}}\left(\frac{\boldsymbol{{y}}}{\boldsymbol{{x}}}\right)+\boldsymbol{{x}}=\boldsymbol{{c}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com