Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116627 by mnjuly1970 last updated on 05/Oct/20

                        ...  nice   calculus...          please   evaluate ::                    Φ = (((∫_0 ^( (π/2)) ((e^x +e^(−x) )/(sin(x)+cos(x)))dx)^2 )/((∫_0 ^( (π/2)) (e^x /(sin(x)+cos(x)))dx)(∫_0 ^( (π/2)) (e^(−x) /(sin(x)+cos(x)))dx))) =???            m.n.1970

$$\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:...\:\:{nice}\:\:\:{calculus}... \\ $$$$ \\ $$$$\:\:\:\:\:\:{please}\:\:\:{evaluate}\::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Phi\:=\:\frac{\left(\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{e}^{{x}} +{e}^{−{x}} }{{sin}\left({x}\right)+{cos}\left({x}\right)}{dx}\right)^{\mathrm{2}} }{\left(\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{e}^{{x}} }{{sin}\left({x}\right)+{cos}\left({x}\right)}{dx}\right)\left(\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{e}^{−{x}} }{{sin}\left({x}\right)+{cos}\left({x}\right)}{dx}\right)}\:=???\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$$$ \\ $$

Answered by mindispower last updated on 05/Oct/20

∫_0 ^(π/2) (e^x /(sin(x)+cos(x)))dx=J  =∫_0 ^(π/2) (e^((π/2)−x) /(cos(x)+sin(x)))dx  =e^(π/2) ∫_0 ^(π/2) (e^(−x) /(sin(x)+cos(x)))=e^(π/2) I  Φ=(((J+I)^2 )/(I.J))=(((Ie^(π/2) +I)^2 )/(I.e^(π/2) I))=(((e^(π/2) +1)^2 )/e^(π/2) )  =e^(π/2) +e^(−(π/2)) +2=2(ch((π/2))+1)

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{e}^{{x}} }{{sin}\left({x}\right)+{cos}\left({x}\right)}{dx}={J} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{e}^{\frac{\pi}{\mathrm{2}}−{x}} }{{cos}\left({x}\right)+{sin}\left({x}\right)}{dx} \\ $$$$={e}^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{e}^{−{x}} }{{sin}\left({x}\right)+{cos}\left({x}\right)}={e}^{\frac{\pi}{\mathrm{2}}} {I} \\ $$$$\Phi=\frac{\left({J}+{I}\right)^{\mathrm{2}} }{{I}.{J}}=\frac{\left({Ie}^{\frac{\pi}{\mathrm{2}}} +{I}\right)^{\mathrm{2}} }{{I}.{e}^{\frac{\pi}{\mathrm{2}}} {I}}=\frac{\left({e}^{\frac{\pi}{\mathrm{2}}} +\mathrm{1}\right)^{\mathrm{2}} }{{e}^{\frac{\pi}{\mathrm{2}}} } \\ $$$$={e}^{\frac{\pi}{\mathrm{2}}} +{e}^{−\frac{\pi}{\mathrm{2}}} +\mathrm{2}=\mathrm{2}\left({ch}\left(\frac{\pi}{\mathrm{2}}\right)+\mathrm{1}\right) \\ $$

Commented by mnjuly1970 last updated on 05/Oct/20

vood for you

$${vood}\:{for}\:{you}\:\: \\ $$

Answered by Dwaipayan Shikari last updated on 05/Oct/20

I=∫_0 ^(π/2) ((e^x +e^(−x) )/(sinx+cosx))dx  I_1 =∫_0 ^(π/2) (e^x /(sinx+cosx))dx=∫_0 ^(π/2) (e^((π/2)−x) /(sinx+cosx))dx=e^(π/2) ∫_0 ^(π/2) (e^(−x) /(sinx+cosx))dx  I_2 =∫_0 ^(π/2) (e^(−x) /(sinx+cosx))dx  I_2 =e^(π/2) I_1   I_1 +I_2 =I  (By observation)  Φ=(((I)^2 )/(I_1 I_2 ))=(((I_1 +I_2 )^2 )/(I_1 ^2 e^(π/2) ))=(((e^(π/2) +1)^2 )/e^(π/2) )=i^i .((i)^(1/i) +1)^2

$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{e}^{{x}} +{e}^{−{x}} }{{sinx}+{cosx}}{dx} \\ $$$${I}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{e}^{{x}} }{{sinx}+{cosx}}{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{e}^{\frac{\pi}{\mathrm{2}}−{x}} }{{sinx}+{cosx}}{dx}={e}^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{e}^{−{x}} }{{sinx}+{cosx}}{dx} \\ $$$${I}_{\mathrm{2}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{e}^{−{x}} }{{sinx}+{cosx}}{dx} \\ $$$${I}_{\mathrm{2}} ={e}^{\frac{\pi}{\mathrm{2}}} {I}_{\mathrm{1}} \\ $$$${I}_{\mathrm{1}} +{I}_{\mathrm{2}} ={I}\:\:\left({By}\:{observation}\right) \\ $$$$\Phi=\frac{\left({I}\right)^{\mathrm{2}} }{{I}_{\mathrm{1}} {I}_{\mathrm{2}} }=\frac{\left({I}_{\mathrm{1}} +{I}_{\mathrm{2}} \right)^{\mathrm{2}} }{{I}_{\mathrm{1}} ^{\mathrm{2}} {e}^{\frac{\pi}{\mathrm{2}}} }=\frac{\left({e}^{\frac{\pi}{\mathrm{2}}} +\mathrm{1}\right)^{\mathrm{2}} }{{e}^{\frac{\pi}{\mathrm{2}}} }={i}^{{i}} .\left(\sqrt[{{i}}]{{i}}+\mathrm{1}\right)^{\mathrm{2}} \\ $$

Commented by Dwaipayan Shikari last updated on 05/Oct/20

i^i =e^(−(π/2))    and (i)^(1/i) =i^(1/i) =i^(−i) =e^(π/2)

$$\mathrm{i}^{\mathrm{i}} =\mathrm{e}^{−\frac{\pi}{\mathrm{2}}} \:\:\:{and}\:\sqrt[{{i}}]{{i}}={i}^{\frac{\mathrm{1}}{{i}}} ={i}^{−{i}} ={e}^{\frac{\pi}{\mathrm{2}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com