Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116667 by mnjuly1970 last updated on 05/Oct/20

            ...   nice  calculus...          very nice  integral::         demonstrate:::            Ω = ∫_0 ^( 1) ((1−x)/((1+x+x^2 +x^3 )log(x))) dx=^(???) log((√(1/2)))                         .m.n.1970.

...nicecalculus...veryniceintegral::demonstrate:::Ω=011x(1+x+x2+x3)log(x)dx=???log(12).m.n.1970.

Answered by maths mind last updated on 06/Oct/20

Hello after many tries  Ω=∫_0 ^1 ((1−x)/((1+x+x^2 +x^3 ))).(dx/(log(x)))  let f(a)=∫_0 ^1 ((1−x)/((1+x+x^2 +x^3 ))).(x^a /(log(x)))dx,a∈[0,1]  Ω=f(0)  f(a)=∫_0 ^1 (((1−x)^2 )/(1−x^4 ))..(x^a /(log(x)))dx  f′(a)=∫_0 ^1 (((1−x)^2 )/((1−x^4 ))).∂_a x^a .(dx/(log(x)))=∫_0 ^1 (((x^2 −2x+1))/(1−x^4 )).x^a dx  x^4 =t⇒dx=(t^(−(3/4)) /4)dt  f′(a)=∫_0 ^1 ((t^(2/4) −2t^(1/4) +1)/(1−t))t^(a/4) .t^(−(3/4)) (dt/4)  =−∫_0 ^1 ((1−t^((a/4)−(1/4)) )/(1−t))dt+2∫((1−t^((a/4)−(2/4)) )/(1−t))dt−∫((1−t^((a/4)−(3/4)) )/(1−t))dt  we Have one of definition of Digamma  Ψ(s+1)=−γ+∫_0 ^1 ((1−x^s )/(1−x))dx =(lnΓ(s+1))′  4f′(a)=−Ψ(((a+3)/4))+2Ψ(((a+2)/4))−Ψ(((a+1)/4))  4f(a)=−4lnΓ(((a+3)/4))−4lnΓ(((a+1)/4))+8lnΓ(((a+2)/4))+c  lim_(a→∞) f(a)=0⇒c=0  f(0)=Ω  4f(0)=4Ω=−4lnΓ((3/4))−4lnΓ((1/4))+8lnΓ((1/2))  =−4ln(((Γ((1/4))Γ((3/4)))/(Γ^2 ((1/2))))):Γ((1/4))Γ(1−(1/4))=(π/(sin((π/4))))=π(√2)  Γ((1/2))=(√π)⇒4Ω=−4ln(((π(√2))/(((√π))^2 )))=−4ln((√2))=4ln((√(1/2)))  Ω=ln((√(1/2)))  ∫_0 ^1 ((1−x)/(1+x+x^2 +x^3 )).(dx/(log(x)))=ln((√(1/2)))

HelloaftermanytriesΩ=011x(1+x+x2+x3).dxlog(x)letf(a)=011x(1+x+x2+x3).xalog(x)dx,a[0,1]Ω=f(0)f(a)=01(1x)21x4..xalog(x)dxf(a)=01(1x)2(1x4).axa.dxlog(x)=01(x22x+1)1x4.xadxx4=tdx=t344dtf(a)=01t242t14+11tta4.t34dt4=011ta4141tdt+21ta4241tdt1ta4341tdtweHaveoneofdefinitionofDigammaΨ(s+1)=γ+011xs1xdx=(lnΓ(s+1))4f(a)=Ψ(a+34)+2Ψ(a+24)Ψ(a+14)4f(a)=4lnΓ(a+34)4lnΓ(a+14)+8lnΓ(a+24)+climaf(a)=0c=0f(0)=Ω4f(0)=4Ω=4lnΓ(34)4lnΓ(14)+8lnΓ(12)=4ln(Γ(14)Γ(34)Γ2(12)):Γ(14)Γ(114)=πsin(π4)=π2Γ(12)=π4Ω=4ln(π2(π)2)=4ln(2)=4ln(12)Ω=ln(12)011x1+x+x2+x3.dxlog(x)=ln(12)

Commented by maths mind last updated on 06/Oct/20

sam idea worck for ∫_0 ^1 ((1−x^s )/(Σ_(k=0) ^n x^k )).(dx/(log(x)))

samideaworckfor011xsnk=0xk.dxlog(x)

Commented by mnjuly1970 last updated on 07/Oct/20

thank  you   good  for you  your effort  is admirable...

thankyougoodforyouyoureffortisadmirable...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com