All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 116667 by mnjuly1970 last updated on 05/Oct/20
...nicecalculus...veryniceintegral::demonstrate:::Ω=∫011−x(1+x+x2+x3)log(x)dx=???log(12).m.n.1970.
Answered by maths mind last updated on 06/Oct/20
HelloaftermanytriesΩ=∫011−x(1+x+x2+x3).dxlog(x)letf(a)=∫011−x(1+x+x2+x3).xalog(x)dx,a∈[0,1]Ω=f(0)f(a)=∫01(1−x)21−x4..xalog(x)dxf′(a)=∫01(1−x)2(1−x4).∂axa.dxlog(x)=∫01(x2−2x+1)1−x4.xadxx4=t⇒dx=t−344dtf′(a)=∫01t24−2t14+11−tta4.t−34dt4=−∫011−ta4−141−tdt+2∫1−ta4−241−tdt−∫1−ta4−341−tdtweHaveoneofdefinitionofDigammaΨ(s+1)=−γ+∫011−xs1−xdx=(lnΓ(s+1))′4f′(a)=−Ψ(a+34)+2Ψ(a+24)−Ψ(a+14)4f(a)=−4lnΓ(a+34)−4lnΓ(a+14)+8lnΓ(a+24)+clima→∞f(a)=0⇒c=0f(0)=Ω4f(0)=4Ω=−4lnΓ(34)−4lnΓ(14)+8lnΓ(12)=−4ln(Γ(14)Γ(34)Γ2(12)):Γ(14)Γ(1−14)=πsin(π4)=π2Γ(12)=π⇒4Ω=−4ln(π2(π)2)=−4ln(2)=4ln(12)Ω=ln(12)∫011−x1+x+x2+x3.dxlog(x)=ln(12)
Commented by maths mind last updated on 06/Oct/20
samideaworckfor∫011−xs∑nk=0xk.dxlog(x)
Commented by mnjuly1970 last updated on 07/Oct/20
thankyougoodforyouyoureffortisadmirable...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com