Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116672 by mnjuly1970 last updated on 05/Oct/20

               ...   nice  calculus ...                 prove  that :                     I = ∫_0 ^( 1) ((π/4)  −Arctan(x))(dx/(1−x^2 )) = (G/2)  ✓               G is   catalan  constant ...         M.N.1970

...nicecalculus...provethat:I=01(π4Arctan(x))dx1x2=G2Giscatalanconstant...M.N.1970

Answered by mnjuly1970 last updated on 05/Oct/20

     solution:     I = ∫_0 ^( 1) (Arctan(1) −Arctan(x ))dx     I=∫_0 ^( 1) Arctan(((1−x)/(1+x)))(dx/(1−x^2 ))     I =^(( ((1−x)/(1+x))=t ))  −2∫_1 ^( 0)  Arctan(t)(dt/((1+t)^2 [1−(((1−t)/(1+t)))^2 ]))     I = 2∫_0 ^( 1) ((Arctan(t))/(4t)) dt = (1/2) ∫_0 ^( 1) ((Arctan(t))/t)dt    I =(1/2) ∫_0 ^( 1) Σ_(n=0) ^∞ (((−1)^n t^(2n) )/((2n+1))) dt=(1/2) Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^2 ))                          I := (G/2)  ✓✓                      ...m.n.july.1970...

solution:I=01(Arctan(1)Arctan(x))dxI=01Arctan(1x1+x)dx1x2I=(1x1+x=t)210Arctan(t)dt(1+t)2[1(1t1+t)2]I=201Arctan(t)4tdt=1201Arctan(t)tdtI=1201n=0(1)nt2n(2n+1)dt=12n=0(1)n(2n+1)2I:=G2...m.n.july.1970...

Answered by Bird last updated on 06/Oct/20

I =∫_0 ^1 ((π/4)−arctanx)(dx/(1−x^2 ))  we have tan( (π/4)−arctsnx) =  ((1−x)/(1+x)) ⇒(π/4)−arctanx =arctan(((1−x)/(1+x))) ⇒  I =∫_0 ^1  ((arctan(((1−x)/(1+x))))/(1−x^2 ))dx  ch ((1−x)/(1+x))=t give 1−x =t +tx ⇒  1−t =(1+t)x ⇒x =((1−t)/(1+t)) ⇒  (dx/dt) =((−(1+t)−(1−t))/((1+t)^2 ))=((−2)/((1+t)^2 )) ⇒  I =−∫_0 ^1  ((arctan(t))/(1−(((1−t)^2 )/((1+t)^2 ))))×((−2)/((1+t)^2 ))dt  =2 ∫_0 ^1   ((arctant)/((1+t)^2 −(1−t)^2 ))dt  =2 ∫_0 ^1  ((arctan(t))/(1+2t +t^2 −1+2t −t^2 ))dt  =(1/2)∫_0 ^1  ((arctant)/t)dt we have  (arctant)^′  =(1/(1+t^2 )) =Σ_(n=0) ^∞  (−1)^n  t^(2n)   ⇒ arctan(t) =Σ_(n=0) ^∞ (((−1)^n  t^(2n+1) )/(2n+1))  ⇒((arctant)/t) =Σ_(n=0) ^∞  (((−1)^n )/(2n+1))t^(2n)  ⇒  ∫_0 ^1  ((arctant)/t)dt =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 ))=K  ⇒I =(K/2)  (katalan constante)

I=01(π4arctanx)dx1x2wehavetan(π4arctsnx)=1x1+xπ4arctanx=arctan(1x1+x)I=01arctan(1x1+x)1x2dxch1x1+x=tgive1x=t+tx1t=(1+t)xx=1t1+tdxdt=(1+t)(1t)(1+t)2=2(1+t)2I=01arctan(t)1(1t)2(1+t)2×2(1+t)2dt=201arctant(1+t)2(1t)2dt=201arctan(t)1+2t+t21+2tt2dt=1201arctanttdtwehave(arctant)=11+t2=n=0(1)nt2narctan(t)=n=0(1)nt2n+12n+1arctantt=n=0(1)n2n+1t2n01arctanttdt=n=0(1)n(2n+1)2=KI=K2(katalanconstante)

Commented by mnjuly1970 last updated on 06/Oct/20

thank  you  very much...

thankyouverymuch...

Commented by Bird last updated on 07/Oct/20

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com