Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 116695 by bemath last updated on 06/Oct/20

Solving by Gaussian elimination  using the following system of  linear equation  { ((x−3y−2z=6)),((2x−4y−3z=8)),((−3x+6y+8z=−5)) :}

$$\mathrm{Solving}\:\mathrm{by}\:\mathrm{Gaussian}\:\mathrm{elimination} \\ $$$$\mathrm{using}\:\mathrm{the}\:\mathrm{following}\:\mathrm{system}\:\mathrm{of} \\ $$$$\mathrm{linear}\:\mathrm{equation}\:\begin{cases}{\mathrm{x}−\mathrm{3y}−\mathrm{2z}=\mathrm{6}}\\{\mathrm{2x}−\mathrm{4y}−\mathrm{3z}=\mathrm{8}}\\{−\mathrm{3x}+\mathrm{6y}+\mathrm{8z}=−\mathrm{5}}\end{cases} \\ $$

Answered by bobhans last updated on 06/Oct/20

 Solving by Gaussian elimination using  the following system of linear equation    { ((x−3y−2z = 6)),((2x−4y−3z = 8 )),((−3x+6y+8z = −5)) :}    { ((L_1  : x−3y−2z=6)),((L_2  : 2x−4y−3z=8)),((L_3  : −3x+6y+8z=−5)) :}  These step yield    (−2)L_1  :  −2x+6y+4z=−12               L_2  :     2x−4y−3z=8            ____________________ +          L_2 ^∗  :        2y+z = −4    3L_1  :    3x−9y−6z=18        L_3  :−3x +6y+8z=−5       ___________________ +        L_3 ^∗  : −3y+2z = 13  Thus ,the original system is replaced by the   following system ′  L_1  : x−3y−2z=6  L_2  :         2y+z =−4  L_3  :   −3y+2z=13  Next step yield    3L_2  :    6y+3z = −12   2L_3  : −6y+4z=26   _______________ +   L_3 ^(∗∗)  : 7z = 14   Thus our system is replaced by the following  system : L_1  : x−3y−2z=6                      L_2  :         2y+z=−4                      L_3  :                 7z=14   The system is now triangular form   so Part A is completed.  Part B. The values for unknowns are obtained  in reverse order z,y,x by back−substitution  Specifically,  { ((7z=14→z=2)),((2y+z=−4→2y=−6,y=−3)),((x−3y−2z=6,x+9−4=6,x=1)) :}  Thus the solution of the triangular system  and hence the original system is as follows  x = 1; y=−3 ; z=2

$$\:\mathrm{Solving}\:\mathrm{by}\:\mathrm{Gaussian}\:\mathrm{elimination}\:\mathrm{using} \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{system}\:\mathrm{of}\:\mathrm{linear}\:\mathrm{equation} \\ $$$$\:\begin{cases}{\mathrm{x}−\mathrm{3y}−\mathrm{2z}\:=\:\mathrm{6}}\\{\mathrm{2x}−\mathrm{4y}−\mathrm{3z}\:=\:\mathrm{8}\:}\\{−\mathrm{3x}+\mathrm{6y}+\mathrm{8z}\:=\:−\mathrm{5}}\end{cases} \\ $$$$\:\begin{cases}{\mathrm{L}_{\mathrm{1}} \::\:\mathrm{x}−\mathrm{3y}−\mathrm{2z}=\mathrm{6}}\\{\mathrm{L}_{\mathrm{2}} \::\:\mathrm{2x}−\mathrm{4y}−\mathrm{3z}=\mathrm{8}}\\{\mathrm{L}_{\mathrm{3}} \::\:−\mathrm{3x}+\mathrm{6y}+\mathrm{8z}=−\mathrm{5}}\end{cases} \\ $$$$\mathrm{These}\:\mathrm{step}\:\mathrm{yield}\: \\ $$$$\:\left(−\mathrm{2}\right)\mathrm{L}_{\mathrm{1}} \::\:\:−\mathrm{2x}+\mathrm{6y}+\mathrm{4z}=−\mathrm{12} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{L}_{\mathrm{2}} \::\:\:\:\:\:\mathrm{2x}−\mathrm{4y}−\mathrm{3z}=\mathrm{8} \\ $$$$\:\:\:\:\:\:\:\:\:\:\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\:+\: \\ $$$$\:\:\:\:\:\:\:\mathrm{L}_{\mathrm{2}} ^{\ast} \::\:\:\:\:\:\:\:\:\mathrm{2y}+\mathrm{z}\:=\:−\mathrm{4} \\ $$$$\:\:\mathrm{3L}_{\mathrm{1}} \::\:\:\:\:\mathrm{3x}−\mathrm{9y}−\mathrm{6z}=\mathrm{18} \\ $$$$\:\:\:\:\:\:\mathrm{L}_{\mathrm{3}} \::−\mathrm{3x}\:+\mathrm{6y}+\mathrm{8z}=−\mathrm{5} \\ $$$$\:\:\:\:\:\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\:+ \\ $$$$\:\:\:\:\:\:\mathrm{L}_{\mathrm{3}} ^{\ast} \::\:−\mathrm{3y}+\mathrm{2z}\:=\:\mathrm{13} \\ $$$$\mathrm{Thus}\:,\mathrm{the}\:\mathrm{original}\:\mathrm{system}\:\mathrm{is}\:\mathrm{replaced}\:\mathrm{by}\:\mathrm{the}\: \\ $$$$\mathrm{following}\:\mathrm{system}\:' \\ $$$$\mathrm{L}_{\mathrm{1}} \::\:\mathrm{x}−\mathrm{3y}−\mathrm{2z}=\mathrm{6} \\ $$$$\mathrm{L}_{\mathrm{2}} \::\:\:\:\:\:\:\:\:\:\mathrm{2y}+\mathrm{z}\:=−\mathrm{4} \\ $$$$\mathrm{L}_{\mathrm{3}} \::\:\:\:−\mathrm{3y}+\mathrm{2z}=\mathrm{13} \\ $$$$\mathrm{Next}\:\mathrm{step}\:\mathrm{yield}\: \\ $$$$\:\mathrm{3L}_{\mathrm{2}} \::\:\:\:\:\mathrm{6y}+\mathrm{3z}\:=\:−\mathrm{12} \\ $$$$\:\mathrm{2L}_{\mathrm{3}} \::\:−\mathrm{6y}+\mathrm{4z}=\mathrm{26} \\ $$$$\:\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\:+\: \\ $$$$\mathrm{L}_{\mathrm{3}} ^{\ast\ast} \::\:\mathrm{7z}\:=\:\mathrm{14}\: \\ $$$$\mathrm{Thus}\:\mathrm{our}\:\mathrm{system}\:\mathrm{is}\:\mathrm{replaced}\:\mathrm{by}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{system}\::\:\mathrm{L}_{\mathrm{1}} \::\:\mathrm{x}−\mathrm{3y}−\mathrm{2z}=\mathrm{6} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{L}_{\mathrm{2}} \::\:\:\:\:\:\:\:\:\:\mathrm{2y}+\mathrm{z}=−\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{L}_{\mathrm{3}} \::\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{7z}=\mathrm{14}\: \\ $$$$\mathrm{The}\:\mathrm{system}\:\mathrm{is}\:\mathrm{now}\:\mathrm{triangular}\:\mathrm{form}\: \\ $$$$\mathrm{so}\:\mathrm{Part}\:\mathrm{A}\:\mathrm{is}\:\mathrm{completed}. \\ $$$$\mathrm{Part}\:\mathrm{B}.\:\mathrm{The}\:\mathrm{values}\:\mathrm{for}\:\mathrm{unknowns}\:\mathrm{are}\:\mathrm{obtained} \\ $$$$\mathrm{in}\:\mathrm{reverse}\:\mathrm{order}\:\mathrm{z},\mathrm{y},\mathrm{x}\:\mathrm{by}\:\mathrm{back}−\mathrm{substitution} \\ $$$$\mathrm{Specifically},\:\begin{cases}{\mathrm{7z}=\mathrm{14}\rightarrow\mathrm{z}=\mathrm{2}}\\{\mathrm{2y}+\mathrm{z}=−\mathrm{4}\rightarrow\mathrm{2y}=−\mathrm{6},\mathrm{y}=−\mathrm{3}}\\{\mathrm{x}−\mathrm{3y}−\mathrm{2z}=\mathrm{6},\mathrm{x}+\mathrm{9}−\mathrm{4}=\mathrm{6},\mathrm{x}=\mathrm{1}}\end{cases} \\ $$$$\mathrm{Thus}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangular}\:\mathrm{system} \\ $$$$\mathrm{and}\:\mathrm{hence}\:\mathrm{the}\:\mathrm{original}\:\mathrm{system}\:\mathrm{is}\:\mathrm{as}\:\mathrm{follows} \\ $$$$\mathrm{x}\:=\:\mathrm{1};\:\mathrm{y}=−\mathrm{3}\:;\:\mathrm{z}=\mathrm{2} \\ $$

Commented by bemath last updated on 06/Oct/20

gave kudos...

$$\mathrm{gave}\:\mathrm{kudos}... \\ $$

Answered by 1549442205PVT last updated on 06/Oct/20

 determinant ((1,(−3),(−2),6),(2,(−4),(−3),8),((−3),6,8,(−5)))  (multiplying first row by 2 then substract from second row  next:multiplying first row by 3 then adding to third row  ∼ determinant ((1,(−3),(−2),6),(0,2,1,(−4)),(0,(−3),2,(13)))  Multiplying second row by (3/2)then adding to third row  ∼ determinant ((1,(−3),(−2),6),(0,2,1,(−4)),(0,0,(7/2),7))  We get the triangle system:   { ((x−3y−2z=6)),((2y+z=−4)),(((7/2)z=7)) :}⇔ { ((z=2)),((y=−3)),((x=1)) :}

$$\begin{vmatrix}{\mathrm{1}}&{−\mathrm{3}}&{−\mathrm{2}}&{\mathrm{6}}\\{\mathrm{2}}&{−\mathrm{4}}&{−\mathrm{3}}&{\mathrm{8}}\\{−\mathrm{3}}&{\mathrm{6}}&{\mathrm{8}}&{−\mathrm{5}}\end{vmatrix} \\ $$$$\left(\mathrm{multiplying}\:\mathrm{first}\:\mathrm{row}\:\mathrm{by}\:\mathrm{2}\:\mathrm{then}\:\mathrm{substract}\:\mathrm{from}\:\mathrm{second}\:\mathrm{row}\right. \\ $$$$\mathrm{next}:\mathrm{multiplying}\:\mathrm{first}\:\mathrm{row}\:\mathrm{by}\:\mathrm{3}\:\mathrm{then}\:\mathrm{adding}\:\mathrm{to}\:\mathrm{third}\:\mathrm{row} \\ $$$$\sim\begin{vmatrix}{\mathrm{1}}&{−\mathrm{3}}&{−\mathrm{2}}&{\mathrm{6}}\\{\mathrm{0}}&{\mathrm{2}}&{\mathrm{1}}&{−\mathrm{4}}\\{\mathrm{0}}&{−\mathrm{3}}&{\mathrm{2}}&{\mathrm{13}}\end{vmatrix} \\ $$$$\mathrm{Multiplying}\:\mathrm{second}\:\mathrm{row}\:\mathrm{by}\:\frac{\mathrm{3}}{\mathrm{2}}\mathrm{then}\:\mathrm{adding}\:\mathrm{to}\:\mathrm{third}\:\mathrm{row} \\ $$$$\sim\begin{vmatrix}{\mathrm{1}}&{−\mathrm{3}}&{−\mathrm{2}}&{\mathrm{6}}\\{\mathrm{0}}&{\mathrm{2}}&{\mathrm{1}}&{−\mathrm{4}}\\{\mathrm{0}}&{\mathrm{0}}&{\frac{\mathrm{7}}{\mathrm{2}}}&{\mathrm{7}}\end{vmatrix} \\ $$$$\mathrm{We}\:\mathrm{get}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{system}: \\ $$$$\begin{cases}{\mathrm{x}−\mathrm{3y}−\mathrm{2z}=\mathrm{6}}\\{\mathrm{2y}+\mathrm{z}=−\mathrm{4}}\\{\frac{\mathrm{7}}{\mathrm{2}}\mathrm{z}=\mathrm{7}}\end{cases}\Leftrightarrow\begin{cases}{\mathrm{z}=\mathrm{2}}\\{\mathrm{y}=−\mathrm{3}}\\{\mathrm{x}=\mathrm{1}}\end{cases} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com