All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 116710 by ravisoni505 last updated on 06/Oct/20
Answered by maths mind last updated on 06/Oct/20
caseonea=0∫02axn2ax−x2dx=0othercasex=2ay∫02axn2ax−x2dx=∫01(2ay)n4a2(y−y2)2ady,a∈R=(2a)n+1∫01yn∣2a∣y−y2dy=Sign(a)(2a)n+2∫01yny−y2dy=sign(a)(2a)n+2∫01yn.y.1−ydy∫01yn.y.1−ydy=∫01yn+12(1−y)12dy=β(n+32,32)=Γ(n+32)Γ(32)Γ(n+3)=Γ(n+32).π2(n+2)!weget∫02axn2ax−x2dx=sign(a)(2a)n+2∫01yny−y2dy=sign(a)(2a)n+2.Γ(n+32)π2.(n+2)!
Answered by mathmax by abdo last updated on 06/Oct/20
In=∫02axn2ax−x2dx⇒In=∫02axnx2a−xdx=x=t∫02at2nt2a−t22tdt=2∫02at2n+2(2a)2−t2dt=t=2asinθ2∫0arcsin(2a)sin2n+2θ2acost2acostdt=4a∫0arcsin(2a)sin2n+2cos2tdt=4a∫0arcsin(2a)sin2n+2t(1−sin2t)dt=4a∫0arcsin(2a)sin2n+2t−4a∫0arcsinAsin2n+4tdt⇒∑k=0nIk=4a∑k=0n(vk−vk+1)withvk=∫0arcsin(2a)sin2k+2tdt=4a(v0−v1+v1−v2+....+vn−vn+1)=4a(v0−vn+1)wehavev0=∫0arcsin(2a)sin2tdt=12∫0arcsin(2a)(1+cos(2t))dt=arcsin(2a)2+[14sin(2t)]0arcsin(2a)=arcsin(2a)2+12[sint1−sin2t]0arcsin(2a)=arcsin(2a)2+12{2a1−2a}vn+1=∫0arcsin(2a)sin2n+4tdt(wallisintegralon[0,arcsin(2a))alsowecandeterminearecurrencerelationbetweenIn
Terms of Service
Privacy Policy
Contact: info@tinkutara.com