Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 116710 by ravisoni505 last updated on 06/Oct/20

Answered by maths mind last updated on 06/Oct/20

case one a=0  ∫_0 ^(2a) x^n (√(2ax−x^2 ))dx=0  other case x=2ay  ∫_0 ^(2a) x^n (√(2ax−x^2 ))dx=∫_0 ^1 (2ay)^n (√(4a^2 (y−y^2 ) ))  2ady,a∈R  =(2a)^(n+1) ∫_0 ^1 y^n ∣2a∣(√(y−y^2 ))dy  =Sign(a)(2a)^(n+2) ∫_0 ^1 y^n (√(y−y^2 ))dy=sign(a)(2a)^(n+2) ∫_0 ^1 y^n .(√y).(√(1−y))dy  ∫_0 ^1 y^n .(√y).(√(1−y))dy=∫_0 ^1 y^(n+(1/2)) (1−y)^(1/2) dy=β(n+(3/2),(3/2))  =((Γ(n+(3/2))Γ((3/2)))/(Γ(n+3)))=((Γ(n+(3/2)).(√π))/(2(n+2)!))  we get∫_0 ^(2a) x^n (√(2ax−x^2 ))dx=sign(a)(2a)^(n+2) ∫_0 ^1 y^n (√(y−y^2 ))dy  =sign(a)(2a)^(n+2) .((Γ(n+(3/2))(√π))/(2.(n+2)!))

caseonea=002axn2axx2dx=0othercasex=2ay02axn2axx2dx=01(2ay)n4a2(yy2)2ady,aR=(2a)n+101yn2ayy2dy=Sign(a)(2a)n+201ynyy2dy=sign(a)(2a)n+201yn.y.1ydy01yn.y.1ydy=01yn+12(1y)12dy=β(n+32,32)=Γ(n+32)Γ(32)Γ(n+3)=Γ(n+32).π2(n+2)!weget02axn2axx2dx=sign(a)(2a)n+201ynyy2dy=sign(a)(2a)n+2.Γ(n+32)π2.(n+2)!

Answered by mathmax by abdo last updated on 06/Oct/20

I_n =∫_0 ^(2a)  x^n (√(2ax−x^2 )) dx ⇒ I_n =∫_0 ^(2a)  x^n (√x)(√(2a−x))dx  =_((√x)=t)      ∫_0 ^(√(2a))   t^(2n) t(√(2a−t^2 ))2t dt =2 ∫_0 ^(√(2a)) t^(2n+2) (√(((√(2a)))^2 −t^2 ))dt  =_(t=(√(2a))sinθ)     2  ∫_0 ^(arcsin((√(2a))))  sin^(2n+2) θ(√(2a))cost (√(2a))cost dt  =4a ∫_0 ^(arcsin((√(2a))))    sin^(2n+2)  cos^2 t dt  =4a ∫_0 ^(arcsin((√(2a)))) sin^(2n+2) t(1−sin^2 t)dt  =4a ∫_0 ^(arcsin((√(2a))))  sin^(2n+2) t −4a ∫_0 ^(arcsinA)   sin^(2n+4) tdt  ⇒Σ_(k=0) ^n  I_k =4a Σ_(k=0) ^n  (v_k −v_(k+1) ) with v_k =∫_0 ^(arcsin((√(2a))))  sin^(2k+2)  tdt  =4a(v_0 −v_1 +v_1 −v_2 +....+v_n −v_(n+1) )  =4a (v_0 −v_(n+1) )  we have v_0 =∫_0 ^(arcsin((√(2a)))) sin^2 t dt  =(1/2)∫_0 ^(arcsin((√(2a)))) (1+cos(2t))dt =((arcsin((√(2a))))/2) +[(1/4)sin(2t)]_0 ^(arcsin((√(2a))))   =((arcsin((√(2a))))/2) +(1/2)[sint (√(1−sin^2 t))]_0 ^(arcsin((√(2a))))   =((arcsin((√(2a))))/2) +(1/2){(√(2a))(√(1−2a))}  v_(n+1) =∫_0 ^(arcsin((√(2a)))) sin^(2n+4) t dt  (wallis integral on[0,arcsin((√(2a))))  also we can determine a recurrence relation between I_n

In=02axn2axx2dxIn=02axnx2axdx=x=t02at2nt2at22tdt=202at2n+2(2a)2t2dt=t=2asinθ20arcsin(2a)sin2n+2θ2acost2acostdt=4a0arcsin(2a)sin2n+2cos2tdt=4a0arcsin(2a)sin2n+2t(1sin2t)dt=4a0arcsin(2a)sin2n+2t4a0arcsinAsin2n+4tdtk=0nIk=4ak=0n(vkvk+1)withvk=0arcsin(2a)sin2k+2tdt=4a(v0v1+v1v2+....+vnvn+1)=4a(v0vn+1)wehavev0=0arcsin(2a)sin2tdt=120arcsin(2a)(1+cos(2t))dt=arcsin(2a)2+[14sin(2t)]0arcsin(2a)=arcsin(2a)2+12[sint1sin2t]0arcsin(2a)=arcsin(2a)2+12{2a12a}vn+1=0arcsin(2a)sin2n+4tdt(wallisintegralon[0,arcsin(2a))alsowecandeterminearecurrencerelationbetweenIn

Terms of Service

Privacy Policy

Contact: info@tinkutara.com