All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 116768 by bemath last updated on 06/Oct/20
sin(4sin−1(x))=sin(2sin−1(x))
Answered by bobhans last updated on 06/Oct/20
lettingsin−1(x)=z⇒sinz=x⇒sin(4z)=sin(2z)⇒2sin(2z)cos(2z)−sin(2z)=0⇒{sin(2z)=0orcos(2z)=12case(1)⇒sin2z=0⇒2sinz.cosz=0;2x1−x2=0wegetx=0orx=±1case(2)⇒cos(2z)=12⇒1−2sin2z=12;12−2x2=0⇒(12)2−x2=0⇒x=±12thereforewegetsolutionsetisx∈{0,±12,±1}
Answered by MJS_new last updated on 06/Oct/20
A=sin(4arcsinx)=4x(1−2x2)1−x2B=sin(2arcsinx)=2x1−x2A−B=02x(1−4x2)1−x2=0⇒x=0∨x=±12∨x=±1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com